Switch to: References

Add citations

You must login to add citations.
  1. Fatal Heyting Algebras and Forcing Persistent Sentences.Leo Esakia & Benedikt Löwe - 2012 - Studia Logica 100 (1-2):163-173.
    Hamkins and Löwe proved that the modal logic of forcing is S4.2 . In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra H ZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal translation of substructural logics.Chrysafis Hartonas - 2020 - Journal of Applied Non-Classical Logics 30 (1):16-49.
    In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lattice logic as a fragment of (2-sorted) residuated modal logic.Chrysafis Hartonas - 2019 - Journal of Applied Non-Classical Logics 29 (2):152-170.
    ABSTRACTCorrespondence and Shalqvist theories for Modal Logics rely on the simple observation that a relational structure is at the same time the basis for a model of modal logic and for a model of first-order logic with a binary predicate for the accessibility relation. If the underlying set of the frame is split into two components,, and, then frames are at the same time the basis for models of non-distributive lattice logic and of two-sorted, residuated modal logic. This suggests that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Characterization of Classes of Frames in Modal Language.Kazimierz Trzęsicki - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40).
    Download  
     
    Export citation  
     
    Bookmark