Switch to: References

Add citations

You must login to add citations.
  1. Coarse reducibility and algorithmic randomness.Denis R. Hirschfeldt, Carl G. Jockusch, Rutger Kuyper & Paul E. Schupp - 2016 - Journal of Symbolic Logic 81 (3):1028-1046.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lebesgue density and classes.Mushfeq Khan - 2016 - Journal of Symbolic Logic 81 (1):80-95.
    Analyzing the effective content of the Lebesgue density theorem played a crucial role in some recent developments in algorithmic randomness, namely, the solutions of the ML-covering and ML-cupping problems. Two new classes of reals emerged from this inquiry: thepositive density pointswith respect toeffectively closed sets of reals, and a proper subclass, thedensity-one points. Bienvenu, Hölzl, Miller, and Nies have shown that the Martin-Löf random positive density points are exactly the ones that do not compute the halting problem. Treating this theorem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing from projections of random points.Noam Greenberg, Joseph S. Miller & André Nies - 2019 - Journal of Mathematical Logic 20 (1):1950014.
    We study the sets that are computable from both halves of some (Martin–Löf) random sequence, which we call 1/2-bases. We show that the collection of such sets forms an ideal in the Turing degrees that is generated by its c.e. elements. It is a proper subideal of the K-trivial sets. We characterize 1/2-bases as the sets computable from both halves of Chaitin’s Ω, and as the sets that obey the cost function c(x,s)=Ωs−Ωx−−−−−−−√. Generalizing these results yields a dense hierarchy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Randomness notions and reverse mathematics.André Nies & Paul Shafer - 2020 - Journal of Symbolic Logic 85 (1):271-299.
    We investigate the strength of a randomness notion ${\cal R}$ as a set-existence principle in second-order arithmetic: for each Z there is an X that is ${\cal R}$-random relative to Z. We show that the equivalence between 2-randomness and being infinitely often C-incompressible is provable in $RC{A_0}$. We verify that $RC{A_0}$ proves the basic implications among randomness notions: 2-random $\Rightarrow$ weakly 2-random $\Rightarrow$ Martin-Löf random $\Rightarrow$ computably random $\Rightarrow$ Schnorr random. Also, over $RC{A_0}$ the existence of computable randoms is equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark