Switch to: References

Add citations

You must login to add citations.
  1. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gleason's theorem has a constructive proof.Fred Richman - 2000 - Journal of Philosophical Logic 29 (4):425-431.
    Gleason's theorem for ������³ says that if f is a nonnegative function on the unit sphere with the property that f(x) + f(y) + f(z) is a fixed constant for each triple x, y, z of mutually orthogonal unit vectors, then f is a quadratic form. We examine the issues raised by discussions in this journal regarding the possibility of a constructive proof of Gleason's theorem in light of the recent publication of such a proof.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Discussion. Applied constructive mathematics: on Hellman's 'mathematical constructivism in spacetime'.H. Billinge - 2000 - British Journal for the Philosophy of Science 51 (2):299-318.
    claims that constructive mathematics is inadequate for spacetime physics and hence that constructive mathematics cannot be considered as an alternative to classical mathematics. He also argues that the contructivist must be guilty of a form of a priorism unless she adopts a strong form of anti-realism for science. Here I want to dispute both claims. First, even if there are non-constructive results in physics this does not show that adequate constructive alternatives could not be formulated. Secondly, the constructivist adopts a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Generalizations of Kochen and Specker's theorem and the effectiveness of Gleason's theorem.Itamar Pitowsky - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):177-194.
    Kochen and Specker’s theorem can be seen as a consequence of Gleason’s theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason’s theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated. r 2003 Elsevier Ltd. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark  
  • A constructivist perspective on physics.Peter Fletcher - 2002 - Philosophia Mathematica 10 (1):26-42.
    This paper examines the problem of extending the programme of mathematical constructivism to applied mathematics. I am not concerned with the question of whether conventional mathematical physics makes essential use of the principle of excluded middle, but rather with the more fundamental question of whether the concept of physical infinity is constructively intelligible. I consider two kinds of physical infinity: a countably infinite constellation of stars and the infinitely divisible space-time continuum. I argue (contrary to Hellman) that these do not. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Generalizations of Kochen and Specker's theorem and the effectiveness of Gleason's theorem.Ehud Hrushovski & Itamar Pitowsky - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):177-194.
    Kochen and Specker's theorem can be seen as a consequence of Gleason's theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason's theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated.
    Download  
     
    Export citation  
     
    Bookmark