Switch to: References

Add citations

You must login to add citations.
  1. On effectively closed sets of effective strong measure zero.Kojiro Higuchi & Takayuki Kihara - 2014 - Annals of Pure and Applied Logic 165 (9):1445-1469.
    The strong measure zero sets of reals have been widely studied in the context of set theory of the real line. The notion of strong measure zero is straightforwardly effectivized. A set of reals is said to be of effective strong measure zero if for any computable sequence {εn}n∈N{εn}n∈N of positive rationals, a sequence of intervals InIn of diameter εnεn covers the set. We observe that a set is of effective strong measure zero if and only if it is of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effectively closed sets and enumerations.Paul Brodhead & Douglas Cenzer - 2008 - Archive for Mathematical Logic 46 (7-8):565-582.
    An effectively closed set, or ${\Pi^{0}_{1}}$ class, may viewed as the set of infinite paths through a computable tree. A numbering, or enumeration, is a map from ω onto a countable collection of objects. One numbering is reducible to another if equality holds after the second is composed with a computable function. Many commonly used numberings of ${\Pi^{0}_{1}}$ classes are shown to be mutually reducible via a computable permutation. Computable injective numberings are given for the family of ${\Pi^{0}_{1}}$ classes and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hyperimmunity in 2.Stephen Binns - 2007 - Notre Dame Journal of Formal Logic 48 (2).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mass Problems and Intuitionism.Stephen G. Simpson - 2008 - Notre Dame Journal of Formal Logic 49 (2):127-136.
    Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$. The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the lattice $\mathcal{P}$ is not Brouwerian.
    Download  
     
    Export citation  
     
    Bookmark   5 citations