Switch to: References

Add citations

You must login to add citations.
  1. Every Countable Model of Arithmetic or Set Theory has a Pointwise-Definable End Extension.Joel David Hamkins - forthcoming - Kriterion – Journal of Philosophy.
    According to the math tea argument, there must be real numbers that we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions. And yet, the existence of pointwise-definable models of set theory, in which every individual is definable without parameters, challenges this conclusion. In this article, I introduce a flexible new method for constructing pointwise-definable models of arithmetic and set theory, showing furthermore that every countable model of Zermelo-Fraenkel ZF set theory and of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchical Incompleteness Results for Arithmetically Definable Extensions of Fragments of Arithmetic.Rasmus Blanck - 2021 - Review of Symbolic Logic 14 (3):624-644.
    There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “$\mathrm {T}$is$\Sigma _n$-ill” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation