Switch to: References

Add citations

You must login to add citations.
  1. Infinite-dimensional Ellentuck spaces and Ramsey-classification theorems.Natasha Dobrinen - 2016 - Journal of Mathematical Logic 16 (1):1650003.
    We extend the hierarchy of finite-dimensional Ellentuck spaces to infinite dimensions. Using uniform barriers [Formula: see text] on [Formula: see text] as the prototype structures, we construct a class of continuum many topological Ramsey spaces [Formula: see text] which are Ellentuck-like in nature, and form a linearly ordered hierarchy under projections. We prove new Ramsey-classification theorems for equivalence relations on fronts, and hence also on barriers, on the spaces [Formula: see text], extending the Pudlák–Rödl theorem for barriers on the Ellentuck (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Characterizing existence of certain ultrafilters.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2022 - Annals of Pure and Applied Logic 173 (9):103157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ramsey degrees of ultrafilters, pseudointersection numbers, and the tools of topological Ramsey spaces.Natasha Dobrinen & Sonia Navarro Flores - 2022 - Archive for Mathematical Logic 61 (7):1053-1090.
    This paper investigates properties of \(\sigma \) -closed forcings which generate ultrafilters satisfying weak partition relations. The Ramsey degree of an ultrafilter \({\mathcal {U}}\) for _n_-tuples, denoted \(t({\mathcal {U}},n)\), is the smallest number _t_ such that given any \(l\ge 2\) and coloring \(c:[\omega ]^n\rightarrow l\), there is a member \(X\in {\mathcal {U}}\) such that the restriction of _c_ to \([X]^n\) has no more than _t_ colors. Many well-known \(\sigma \) -closed forcings are known to generate ultrafilters with finite Ramsey degrees, (...)
    Download  
     
    Export citation  
     
    Bookmark