Switch to: References

Citations of:

Utilitarianism and the Theory of Justice

School of Economics, University of Nottingham (1999)

Add citations

You must login to add citations.
  1. Utilitarianism without Moral Aggregation.Johan E. Gustafsson - 2021 - Canadian Journal of Philosophy 51 (4):256-269.
    Is an outcome where many people are saved and one person dies better than an outcome where the one is saved and the many die? According to the standard utilitarian justification, the former is better because it has a greater sum total of well-being. This justification involves a controversial form of moral aggregation, because it is based on a comparison between aggregates of different people's well-being. Still, an alternative justification—the Argument for Best Outcomes—does not involve moral aggregation. I extend the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Additive representation of separable preferences over infinite products.Marcus Pivato - 2014 - Theory and Decision 77 (1):31-83.
    Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }$$\end{document} be a set of outcomes, and let I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{I }$$\end{document} be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} on XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }^\mathcal{I }$$\end{document} admits an additive representation. That is: there exists a linearly ordered abelian group R\documentclass[12pt]{minimal} (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations