Switch to: References

Add citations

You must login to add citations.
  1. An almost general splitting theorem for modal logic.Marcus Kracht - 1990 - Studia Logica 49 (4):455 - 470.
    Given a normal (multi-)modal logic a characterization is given of the finitely presentable algebras A whose logics L A split the lattice of normal extensions of . This is a substantial generalization of Rautenberg [10] and [11] in which is assumed to be weakly transitive and A to be finite. We also obtain as a direct consequence a result by Blok [2] that for all cycle-free and finite A L A splits the lattice of normal extensions of K. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Mathematical modal logic: A view of its evolution.Robert Goldblatt - 2003 - Journal of Applied Logic 1 (5-6):309-392.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Even more about the lattice of tense logics.Marcus Kracht - 1992 - Archive for Mathematical Logic 31 (4):243-257.
    The present paper is based on [11], where a number of conjectures are made concerning the structure of the lattice of normal extensions of the tense logicKt. That paper was mainly dealing with splittings of and some sublattices, and this is what I will concentrate on here as well. The main tool in analysing the splittings of will be the splitting theorem of [8]. In [11] it was conjectured that each finite subdirectly irreducible algebra splits the lattice of normal extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Willem Blok and Modal Logic.W. Rautenberg, M. Zakharyaschev & F. Wolter - 2006 - Studia Logica 83 (1):15-30.
    We present our personal view on W.J. Blok's contribution to modal logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations