Switch to: References

Add citations

You must login to add citations.
  1. Bell's theorem and the nature of reality.R. A. Bertlmann - 1990 - Foundations of Physics 20 (10):1191-1212.
    We rediscuss the Einstein-Podolsky-Rosen paradox in Bohm's spin version and oppose to it Bohr's controversial point of view. Then we explain Bell's theorem, Bell inequalities, and its consequences. We describe the experiment of Aspect, Dalibard, and Roger in detail. Finally we draw attention to the nonlocal structure of the underlying theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • The physics of David Bohm and its relevance to philosophy and theology.Robert John Russell - 1985 - Zygon 20 (2):135-158.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Should we explain the EPR correlations causally?Andrew Elby - 1992 - Philosophy of Science 59 (1):16-25.
    Using three intuitive notions about causes, including Redhead's robustness condition, I formulate necessary conditions on partial causes. I then demonstrate that we cannot explain the EPR correlations in terms of partial causes unless we abandon the quantum mechanical framework and adopt a nonlocal hidden-variable theory. The argument, unlike its predecessors, does not appeal to relativity theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Identification of Mean Quantum Potential with Fisher Information Leads to a Strong Uncertainty Relation.Yakov Bloch & Eliahu Cohen - 2022 - Foundations of Physics 52 (6):1-11.
    The Cramér–Rao bound, satisfied by classical Fisher information, a key quantity in information theory, has been shown in different contexts to give rise to the Heisenberg uncertainty principle of quantum mechanics. In this paper, we show that the identification of the mean quantum potential, an important notion in Bohmian mechanics, with the Fisher information, leads, through the Cramér–Rao bound, to an uncertainty principle which is stronger, in general, than both Heisenberg and Robertson–Schrödinger uncertainty relations, allowing to experimentally test the validity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner.Andrea Di Biagio & Carlo Rovelli - 2022 - Foundations of Physics 52 (3):1-21.
    In recent works, Časlav Brukner and Jacques Pienaar have raised interesting objections to the relational interpretation of quantum mechanics. We answer these objections in detail and show that, far from questioning the viability of the interpretation, they sharpen and clarify it.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Preparation in Bohmian Mechanics.Carlo Rovelli - 2022 - Foundations of Physics 52 (3):1-6.
    According to Bohmian mechanics, we see the particle, not the pilot wave. But to make predictions we need to know the wave. How do we learn about the wave to make predictions, if we only see the particle? I show that the puzzle can be solved, but only thanks to decoherence.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is there room in quantum ontology for a genuine causal role for consciousness?Paavo Pylkkänen - 2017 - In Emmanuel Haven & Andrei Khrennikov (eds.), The Palgrave Handbook of Quantum Models in Social Science: Applications and Grand Challenges. Palgrave Macmillan. pp. 293-317.
    Western philosophy and science have a strongly dualistic tradition regarding the mental and physical aspects of reality, which makes it difficult to understand their possible causal relations. In recent debates in cognitive neuroscience it has been common to claim on the basis of neural experiments that conscious experiences are causally inefficacious. At the same time there is much evidence that consciousness does play an important role in guiding behavior. The author explores whether a new way of understanding the causal role (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum theory, active information and the mind-matter problem.Paavo Pylkkänen - 2016 - In Pylkkänen Paavo (ed.), Contextuality from Quantum Physics to Psychology. World Scientific. pp. 325-334.
    Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This paper discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classical limit of real Dirac theory: Quantization of relativistic central field orbits. [REVIEW]Heinz Krüger - 1993 - Foundations of Physics 23 (9):1265-1288.
    The classical limit of real Dirac theory is derived as the lowest-order contribution in $\mathchar'26\mkern-10mu\lambda = \hslash /mc$ of a new, exact polar decomposition. The resulting classical spinor equation is completely integrated for stationary solutions to arbitrary central fields. Imposing single-valuedness on the covering space of a bivector-valued extension to these classical solutions, orbital angular momentum, energy, and spin directions are quantized. The quantization of energy turns out to yield the WKB formula of Bessey, Uhlenbeck, and Good. It is demonstrated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On some frequent but controversial statements concerning the Einstein-Podolsky-Rosen correlations.O. Costa de Beauregard - 1985 - Foundations of Physics 15 (8):871-887.
    Quite often the compatibility of the EPR correlations with the relativity theory has been questioned; it has been stated that “the first in time of two correlated measurements instantaneously collapses the other subsystem”; it has been suggested that a causal asymmetry is built into the Feynman propagator. However, the EPR transition amplitude, as derived from the S matrix, is Lorentz andCPT invariant; the correlation formula is symmetric in the two measurements irrespective of their time ordering, so that the link of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Decoherence in unorthodox formulations of quantum mechanics.Vassilios Karakostas & Michael Dickson - 1995 - Synthese 102 (1):61 - 97.
    The conceptual structure of orthodox quantum mechanics has not provided a fully satisfactory and coherent description of natural phenomena. With particular attention to the measurement problem, we review and investigate two unorthodox formulations. First, there is the model advanced by GRWP, a stochastic modification of the standard Schrödinger dynamics admitting statevector reduction as a real physical process. Second, there is the ontological interpretation of Bohm, a causal reformulation of the usual theory admitting no collapse of the statevector. Within these two (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Interpreting State Reduction from the Practices-up.Alberto Cordero - 1990 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990 (1):263-275.
    The search for a coherent and fertile interpretation of quantum mechanics [QM] with collapse of the wave function is currently a hot topic. This paper focuses on the following sets of related issues: 1) In what sense, if any, do collapse theories constitute a view of the quantum world induced “from the practices-up”? [Here and throughout the paper the term “a view from the practices-up” will mean a view induced from the practices of scientists working on specific problems.] 2) What (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relating the physics and religion of David Bohm.Kevin J. Sharpe - 1990 - Zygon 25 (1):105-122.
    David Bohm's thinking has become widely publicized since the 1982 performance of a form of the Einstein‐Podolsky‐ Rosen (EPR) experiment. Bohm's holomovement theory, in particular, tries to explain the nonlocality that the experiment supports. Moreover, his theories are close to his metaphysical and religious thinking. Fritjof Capra's writings try something similar: supporting a theory (the bootstrap theory) because it is close to his religious beliefs. Both Bohm and Capra appear to use their religious ideas in their physics. Religion, their source (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum-realistic interpretation.C. F. von Weizsäcker & Th Görnitz - 1991 - Foundations of Physics 21 (3):311-321.
    1. Realism. Physicists claim rightly to speak about reality. But what does “reality” mean?2. The Copenhagen Interpretation (CI). We consider CI as a minimal semantics for quantum theory, leaving ways open for additional interpretation.3. The Measuring Process. Several interpretations of the process as given in the liteature are discussed.4. Realistic Interpretation. Discussion of the de Broglie-Bohm-Bell interpretation. If well formulated, it is not a necessary consequence of quantum theory but cannot be excluded.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to solve the measurement problem of quantum mechanics.Jeffrey Bub - 1988 - Foundations of Physics 18 (7):701-722.
    A solution to the measurement problem of quantum mechanics is proposed within the framework of an intepretation according to which only quantum systems with an infinite number of degrees of freedom have determinate properties, i.e., determinate values for (some) observables of the theory. The important feature of the infinite case is the existence of many inequivalent irreducible Hilbert space representations of the algebra of observables, which leads, in effect, to a restriction on the superposition principle, and hence the possibility of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • From quantum mechanics to universal structures of conceptualization and feedback on quantum mechanics.Mioara Mugur-Schächter - 1993 - Foundations of Physics 23 (1):37-122.
    In previous works we have established that the spacetime probabilistic organization of the quantum theory is determined by the spacetime characteristics of the operations by which the observer produces the objects to be studied (“states” of microsystems) and obtains qualifications of these. Guided by this first conclusion, we have then built a “general syntax of relativized conceptualization” where any description is explicitly and systematically referred to the two basic epistemic operations by which the conceptor introduces the object to be qualified (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Einstein-Podolsky-Rosen constraints on quantum action at a distance: The Sutherland paradox. [REVIEW]N. Cufaro-Petroni, C. Dewdney, P. R. Holland, A. Kyprianidis & J. P. Vigier - 1987 - Foundations of Physics 17 (8):759-773.
    Assuming that future experiments confirm Aspect's discovery of nonlocal interactions between quantum pairs of correlated particles, we analyze the constraints imposed by the EPR reasoning on the said interactions. It is then shown that the nonlocal relativistic quantum potential approach plainly satisfies the Einstein causality criteria as well as the energy-momentum conservation in individual microprocesses. Furthermore, this approach bypasses a new causal paradox for timelike separated EPR measurements deduced by Sutherland in the frame of an approach by means of space-time (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Measurement in Bohm's versus Everett's quantum theory.H. -D. Zeh - 1988 - Foundations of Physics 18 (7):723-730.
    The interpretations of measurements in Bohm's and Everett's quantum theories are compared. Since both theories are based on the assumption of a universally valid Schrödinger equation, they face the common problem of how to explain that arrow of time, which in conventional quantum theory is represented by the collapse of the wave function. Its solution requires, in a statistical sense, a very improbable initial condition for thetotal wave function of the universe. The historical importance of Bohm's quantum theory is pointed (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum dynamical reduction and reality: Replacing probability densities with densities in real space. [REVIEW]Giancarlo Ghirardi - 1996 - Erkenntnis 45 (2-3):349 - 365.
    Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise characterization of the idea (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Classical Versus Quantum Probability in Sequential Measurements.Charis Anastopoulos - 2006 - Foundations of Physics 36 (11):1601-1661.
    We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations