Switch to: References

Add citations

You must login to add citations.
  1. Lebesgue Measure Zero Modulo Ideals on the Natural Numbers.Viera Gavalová & Diego A. Mejía - forthcoming - Journal of Symbolic Logic:1-31.
    We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $ -ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities.Jaroslav Šupina - 2023 - Archive for Mathematical Logic 62 (1):87-112.
    We investigate several ideal versions of the pseudointersection number \(\mathfrak {p}\), ideal slalom numbers, and associated topological spaces with the focus on selection principles. However, it turns out that well-known pseudointersection invariant \(\mathtt {cov}^*({\mathcal I})\) has a crucial influence on the studied notions. For an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal J})\) introduced by Borodulin-Nadzieja and Farkas (Arch. Math. Logic 51:187–202, 2012), and an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal I},{\mathcal J})\) introduced by Repický (Real Anal. Exchange 46:367–394, 2021), we have $$\begin{aligned} \min \{\mathfrak (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations