Switch to: References

Add citations

You must login to add citations.
  1. A Study of Mathematical Determination through Bertrand’s Paradox.Davide Rizza - 2018 - Philosophia Mathematica 26 (3):375-395.
    Certain mathematical problems prove very hard to solve because some of their intuitive features have not been assimilated or cannot be assimilated by the available mathematical resources. This state of affairs triggers an interesting dynamic whereby the introduction of novel conceptual resources converts the intuitive features into further mathematical determinations in light of which a solution to the original problem is made accessible. I illustrate this phenomenon through a study of Bertrand’s paradox.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quelques repéres historiques sur la théorie des jeux.Christian Schmidt - 2006 - Revue de Synthèse 127 (1):141-158.
    L'article s'attache à dégager le fil rouge qui relie les réflexions de Wilhelm Gottfried Leibniz sur les jeux de société à la théorie des jeux, telle qu'on la trouve dans l'ouvrage de John Von Neumann et Oskar Morgenstern. L'itinéraire décrit passe par les travaux de plusieurs mathématiciens du XVIIIe siècle sur différents jeux de hasard, pour aboutir aux recherches de quelques-uns des fondateurs des mathématiques modernes, comme Ernst Zermelo pour la théorie des ensembles et Émile Borel pour la théorie des (...)
    Download  
     
    Export citation  
     
    Bookmark