Switch to: References

Add citations

You must login to add citations.
  1. Simple Logics for Basic Algebras.Ja̅nis Cı̅rulis - 2015 - Bulletin of the Section of Logic 44 (3/4):95-110.
    An MV-algebra is an algebra (A, ⊕, ¬, 0), where (A, ⊕, 0) is a commutative monoid and ¬ is an idempotent operation on A satisfying also some additional axioms. Basic algebras are similar algebras that can roughly be characterised as nonassociative (hence, also non-commutative) generalizations of MV-algebras. Basic algebras and commutative basic algebras provide an equivalent algebraic semantics in the sense of Blok and Pigozzi for two recent logical systems. Both are Hilbert-style systems, with implication and negation as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatization of non-associative generalisations of Hájek's BL and psBL.Yaroslav Petrukhin - 2020 - Journal of Applied Non-Classical Logics 30 (1):1-15.
    ABSTRACTIn this paper, we consider non-associative generalisations of Hájek's logics BL and psBL. As it was shown by Cignoli, Esteva, Godo, and Torrens, the former is the logic of continuous t-norms and their residua. Botur introduced logic naBL which is the logic of non-associative continuous t-norms and their residua. Thus, naBL can be viewed as a non-associative generalisation of BL. However, Botur has not presented axiomatization of naBL. We fill this gap by constructing an adequate Hilbert-style calculus for naBL. Although, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Residuated Structures and Orthomodular Lattices.D. Fazio, A. Ledda & F. Paoli - 2021 - Studia Logica 109 (6):1201-1239.
    The variety of residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., \-groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated \-groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated \-groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation