Switch to: References

Add citations

You must login to add citations.
  1. On model-theoretic connected components in some group extensions.Jakub Gismatullin & Krzysztof Krupiński - 2015 - Journal of Mathematical Logic 15 (2):1550009.
    We analyze model-theoretic connected components in extensions of a given group by abelian groups which are defined by means of 2-cocycles with finite image. We characterize, in terms of these 2-cocycles, when the smallest type-definable subgroup of the corresponding extension differs from the smallest invariant subgroup. In some situations, we also describe the quotient of these two connected components. Using our general results about extensions of groups together with Matsumoto–Moore theory or various quasi-characters considered in bounded cohomology, we obtain new (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Consistency and the theory of truth.Richard Heck - 2015 - Review of Symbolic Logic 8 (3):424-466.
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? Once the question has been properly formulated, the answer turns out to be about as elegant as one could want: Adding a theory of truth to a finitely axiomatized theory T is more or less equivalent to a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Model-Theoretic Connected Groups.Jakub Gismatullin - 2024 - Journal of Symbolic Logic 89 (1):50-79.
    We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
    Download  
     
    Export citation  
     
    Bookmark