Switch to: References

Add citations

You must login to add citations.
  1. The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics.Timothy H. Boyer - 2012 - Foundations of Physics 42 (5):595-614.
    The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell’s equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation.Timothy H. Boyer - 2010 - Foundations of Physics 40 (8):1102-1116.
    It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Connecting Blackbody Radiation, Relativity, and Discrete Charge in Classical Electrodynamics.Timothy H. Boyer - 2007 - Foundations of Physics 37 (7):999-1026.
    It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the scales of length, time, and energy. Indeed, there are analogies between the electrostatic forces for groups (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thermodynamics of Blackbody Radiation Via Classical Physics for Arbitrarily Shaped Cavities with Perfectly Conducting Walls.Daniel C. Cole - 2000 - Foundations of Physics 30 (11):1849-1867.
    An analysis is carried out involving reversible thermodynamic operations on arbitrarily shaped small cavities in perfectly conducting material. These operations consist of quasistatic deformations and displacements of cavity walls and objects within the cavity. This analysis necessarily involves the consideration of Casimir-like forces. Typically, even for the simplest of geometrical structures, such calculations become quite complex, as they need to take into account changes in singular quantities. Much of this complexity is reduced significantly here by working directly with the change (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical electrodynamic systems interacting with classical electromagnetic random radiation.Daniel C. Cole - 1990 - Foundations of Physics 20 (2):225-240.
    In the past, a few researchers have presented arguments indicating that a statistical equilibrium state of classical charged particles necessarily demands the existence of a temperature-independent, incident classical electromagnetic random radiation. Indeed, when classical electromagnetic zero-point radiation is included in the analysis of problems with macroscopic boundaries, or in the analysis of charged particles in linear force fields, then good agreement with nature is obtained. In general, however, this agreement has not been found to hold for charged particles bound in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation