Switch to: References

Add citations

You must login to add citations.
  1. Regressive versions of Hindman’s theorem.Lorenzo Carlucci & Leonardo Mainardi - 2024 - Archive for Mathematical Logic 63 (3):447-472.
    When the Canonical Ramsey’s Theorem by Erdős and Rado is applied to regressive functions, one obtains the Regressive Ramsey’s Theorem by Kanamori and McAloon. Taylor proved a “canonical” version of Hindman’s Theorem, analogous to the Canonical Ramsey’s Theorem. We introduce the restriction of Taylor’s Canonical Hindman’s Theorem to a subclass of the regressive functions, the $$\lambda $$ λ -regressive functions, relative to an adequate version of min-homogeneity and prove some results about the Reverse Mathematics of this Regressive Hindman’s Theorem and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic properties of the first-order part of a problem.Giovanni Soldà & Manlio Valenti - 2023 - Annals of Pure and Applied Logic 174 (7):103270.
    Download  
     
    Export citation  
     
    Bookmark  
  • (Extra)Ordinary Equivalences with the Ascending/Descending Sequence Principle.Marta Fiori-Carones, Alberto Marcone, Paul Shafer & Giovanni Soldà - 2024 - Journal of Symbolic Logic 89 (1):262-307.
    We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reduction games, provability and compactness.Damir D. Dzhafarov, Denis R. Hirschfeldt & Sarah Reitzes - 2022 - Journal of Mathematical Logic 22 (3).
    Journal of Mathematical Logic, Volume 22, Issue 03, December 2022. Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between [math] principles over [math]-models of [math]. They also introduced a version of this game that similarly captures provability over [math]. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication [math] between two (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finding descending sequences through ill-founded linear orders.Jun le Goh, Arno Pauly & Manlio Valenti - 2021 - Journal of Symbolic Logic 86 (2):817-854.
    In this work we investigate the Weihrauch degree of the problem Decreasing Sequence of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem Bad Sequence of finding a bad sequence through a given non-well quasi-order. We show that $\mathsf {DS}$, despite being hard to solve, is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Using Ramsey’s theorem once.Jeffry L. Hirst & Carl Mummert - 2019 - Archive for Mathematical Logic 58 (7-8):857-866.
    We show that \\) cannot be proved with one typical application of \\) in an intuitionistic extension of \ to higher types, but that this does not remain true when the law of the excluded middle is added. The argument uses Kohlenbach’s axiomatization of higher order reverse mathematics, results related to modified reducibility, and a formalization of Weihrauch reducibility.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The uniform content of partial and linear orders.Eric P. Astor, Damir D. Dzhafarov, Reed Solomon & Jacob Suggs - 2017 - Annals of Pure and Applied Logic 168 (6):1153-1171.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • $\Pi ^{0}_{1}$ -Encodability and Omniscient Reductions.Benoit Monin & Ludovic Patey - 2019 - Notre Dame Journal of Formal Logic 60 (1):1-12.
    A set of integers A is computably encodable if every infinite set of integers has an infinite subset computing A. By a result of Solovay, the computably encodable sets are exactly the hyperarithmetic ones. In this article, we extend this notion of computable encodability to subsets of the Baire space, and we characterize the Π10-encodable compact sets as those which admit a nonempty Σ11-subset. Thanks to this equivalence, we prove that weak weak König’s lemma is not strongly computably reducible to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completion of choice.Vasco Brattka & Guido Gherardi - 2021 - Annals of Pure and Applied Logic 172 (3):102914.
    We systematically study the completion of choice problems in the Weihrauch lattice. Choice problems play a pivotal rôle in Weihrauch complexity. For one, they can be used as landmarks that characterize important equivalences classes in the Weihrauch lattice. On the other hand, choice problems also characterize several natural classes of computable problems, such as finite mind change computable problems, non-deterministically computable problems, Las Vegas computable problems and effectively Borel measurable functions. The closure operator of completion generates the concept of total (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations