Switch to: References

Add citations

You must login to add citations.
  1. Connected choice and the Brouwer fixed point theorem.Vasco Brattka, Stéphane Le Roux, Joseph S. Miller & Arno Pauly - 2019 - Journal of Mathematical Logic 19 (1):1950004.
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completion of choice.Vasco Brattka & Guido Gherardi - 2021 - Annals of Pure and Applied Logic 172 (3):102914.
    We systematically study the completion of choice problems in the Weihrauch lattice. Choice problems play a pivotal rôle in Weihrauch complexity. For one, they can be used as landmarks that characterize important equivalences classes in the Weihrauch lattice. On the other hand, choice problems also characterize several natural classes of computable problems, such as finite mind change computable problems, non-deterministically computable problems, Las Vegas computable problems and effectively Borel measurable functions. The closure operator of completion generates the concept of total (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Comparing Computability in Two Topologies.Djamel Eddine Amir & Mathieu Hoyrup - 2024 - Journal of Symbolic Logic 89 (3):1232-1250.
    Computable analysis provides ways of representing points in a topological space, and therefore of defining a notion of computable points of the space. In this article, we investigate when two topologies on the same space induce different sets of computable points. We first study a purely topological version of the problem, which is to understand when two topologies are not $\sigma $ -homeomorphic. We obtain a characterization leading to an effective version, and we prove that two topologies satisfying this condition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation