Switch to: References

Add citations

You must login to add citations.
  1. Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities.Jaroslav Šupina - 2023 - Archive for Mathematical Logic 62 (1):87-112.
    We investigate several ideal versions of the pseudointersection number \(\mathfrak {p}\), ideal slalom numbers, and associated topological spaces with the focus on selection principles. However, it turns out that well-known pseudointersection invariant \(\mathtt {cov}^*({\mathcal I})\) has a crucial influence on the studied notions. For an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal J})\) introduced by Borodulin-Nadzieja and Farkas (Arch. Math. Logic 51:187–202, 2012), and an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal I},{\mathcal J})\) introduced by Repický (Real Anal. Exchange 46:367–394, 2021), we have $$\begin{aligned} \min \{\mathfrak (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Characterizing existence of certain ultrafilters.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2022 - Annals of Pure and Applied Logic 173 (9):103157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ways of Destruction.Barnabás Farkas & Lyubomyr Zdomskyy - 2022 - Journal of Symbolic Logic 87 (3):938-966.
    We study the following natural strong variant of destroying Borel ideals: $\mathbb {P}$ $+$ -destroys $\mathcal {I}$ if $\mathbb {P}$ adds an $\mathcal {I}$ -positive set which has finite intersection with every $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants $$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y| \omega $ ; (4) we characterise when the Laver–Prikry, $\mathbb {L}(\mathcal {I}^*)$ -generic real $+$ -destroys $\mathcal {I}$, and in the case of P-ideals, when exactly $\mathbb {L}(\mathcal {I}^*)$ $+$ -destroys $\mathcal {I}$ ; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the structure of Borel ideals in-between the ideals ED and Fin ⊗ Fin in the Katětov order.Pratulananda Das, Rafał Filipów, Szymon Gła̧b & Jacek Tryba - 2021 - Annals of Pure and Applied Logic 172 (8):102976.
    Download  
     
    Export citation  
     
    Bookmark   1 citation