Switch to: References

Add citations

You must login to add citations.
  1. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Fermat’s Dilemma: Why Did He Keep Mum on Infinitesimals? And the European Theological Context.Jacques Bair, Mikhail G. Katz & David Sherry - 2018 - Foundations of Science 23 (3):559-595.
    The first half of the 17th century was a time of intellectual ferment when wars of natural philosophy were echoes of religious wars, as we illustrate by a case study of an apparently innocuous mathematical technique called adequality pioneered by the honorable judge Pierre de Fermat, its relation to indivisibles, as well as to other hocus-pocus. André Weil noted that simple applications of adequality involving polynomials can be treated purely algebraically but more general problems like the cycloid curve cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Internality, transfer, and infinitesimal modeling of infinite processes†.Emanuele Bottazzi & Mikhail G. Katz - forthcoming - Philosophia Mathematica.
    ABSTRACTA probability model is underdetermined when there is no rational reason to assign a particular infinitesimal value as the probability of single events. Pruss claims that hyperreal probabilities are underdetermined. The claim is based upon external hyperreal-valued measures. We show that internal hyperfinite measures are not underdetermined. The importance of internality stems from the fact that Robinson’s transfer principle only applies to internal entities. We also evaluate the claim that transferless ordered fields may have advantages over hyperreals in probabilistic modeling. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Encyclopedia of the Scientific Revolution: From Copernicus to Newton.Wilbur Applebaum (ed.) - 2008 - Taylor & Francis US.
    First Published in 2008. Routledge is an imprint of Taylor & Francis, an informa company.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond.Mikhail G. Katz, David M. Schaps & Steven Shnider - 2013 - Perspectives on Science 21 (3):283-324.
    Adequality, or παρισóτης (parisotēs) in the original Greek of Diophantus 1 , is a crucial step in Fermat’s method of finding maxima, minima, tangents, and solving other problems that a modern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s collected works (1891, pp. 133–172). The first article, Methodus ad Disquirendam Maximam et Minimam 2 , opens with a summary of an algorithm for finding the maximum or minimum value of an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations