Switch to: References

Add citations

You must login to add citations.
  1. Generic Derivations on Algebraically Bounded Structures.Antongiulio Fornasiero & Giuseppina Terzo - forthcoming - Journal of Symbolic Logic:1-27.
    Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$, has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T^{\delta }$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic derivations on o-minimal structures.Antongiulio Fornasiero & Elliot Kaplan - 2020 - Journal of Mathematical Logic 21 (2):2150007.
    Let T be a complete, model complete o-minimal theory extending the theory RCF of real closed ordered fields in some appropriate language L. We study derivations δ on models ℳ⊧T. We introduce the no...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Topological differential fields and dimension functions.Nicolas Guzy & Françoise Point - 2012 - Journal of Symbolic Logic 77 (4):1147-1164.
    We construct a fibered dimension function in some topological differential fields.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A nullstellensatz and a positivstellensatz for ordered differential fields.Quentin Brouette - 2013 - Mathematical Logic Quarterly 59 (3):247-254.
    Download  
     
    Export citation  
     
    Bookmark  
  • Topological fields with a generic derivation.Pablo Cubides Kovacsics & Françoise Point - 2023 - Annals of Pure and Applied Logic 174 (3):103211.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Further notes on cell decomposition in closed ordered differential fields.Cédric Rivière - 2009 - Annals of Pure and Applied Logic 159 (1-2):100-110.
    In [T. Brihaye, C. Michaux, C. Rivière, Cell decomposition and dimension function in the theory of closed ordered differential fields, Ann. Pure Appl. Logic .] the authors proved a cell decomposition theorem for the theory of closed ordered differential fields which generalizes the usual Cell Decomposition Theorem for o-minimal structures. As a consequence of this result, a well-behaving dimension function on definable sets in CODF was introduced. Here we continue the study of this cell decomposition in CODF by proving three (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strong density of definable types and closed ordered differential fields.Quentin Brouette, Pablo Cubides Kovacsics & Françoise Point - 2019 - Journal of Symbolic Logic 84 (3):1099-1117.
    The following strong form of density of definable types is introduced for theoriesTadmitting a fibered dimension functiond: given a modelMofTand a definable setX⊆Mn, there is a definable typepinX, definable over a code forXand of the samed-dimension asX. Both o-minimal theories and the theory of closed ordered differential fields are shown to have this property. As an application, we derive a new proof of elimination of imaginaries for CODF.
    Download  
     
    Export citation  
     
    Bookmark   3 citations