Switch to: References

Add citations

You must login to add citations.
  1. Compendium of the foundations of classical statistical physics.Jos Uffink - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Understanding thermodynamic singularities: Phase transitions, data, and phenomena.Sorin Bangu - 2009 - Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On the Role of Bridge Laws in Intertheoretic Relations.Sorin Bangu - 2011 - Philosophy of Science 78 (5):1108-1119.
    What is the role of bridge laws in inter-theoretic relations? An assumption shared by many views about these relations is that bridge laws enable reductions. In this article, I acknowledge the naturalness of this assumption, but I question it by presenting a context within thermal physics (involving phase transitions) in which the bridge laws, puzzlingly, seem to contribute to blocking the reduction.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Chance and time.Amit Hagar - 2004 - Dissertation, Ubc
    One of the recurrent problems in the foundations of physics is to explain why we rarely observe certain phenomena that are allowed by our theories and laws. In thermodynamics, for example, the spontaneous approach towards equilibrium is ubiquitous yet the time-reversal-invariant laws that presumably govern thermal behaviour in the microscopic level equally allow spontaneous departure from equilibrium to occur. Why are the former processes frequently observed while the latter are almost never reported? Another example comes from quantum mechanics where the (...)
    Download  
     
    Export citation  
     
    Bookmark