Switch to: References

Add citations

You must login to add citations.
  1. Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is this assumption as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representational indispensability and ontological commitment.John Heron - 2020 - Thought: A Journal of Philosophy 9 (2):105-114.
    Recent debates about mathematical ontology are guided by the view that Platonism's prospects depend on mathematics' explanatory role in science. If mathematics plays an explanatory role, and in the right kind of way, this carries ontological commitment to mathematical objects. Conversely, the assumption goes, if mathematics merely plays a representational role then our world-oriented uses of mathematics fail to commit us to mathematical objects. I argue that it is a mistake to think that mathematical representation is necessarily ontologically innocent and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemic Indispensability Argument.Cristian Soto - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (1):145-161.
    This article elaborates the epistemic indispensability argument, which fully embraces the epistemic contribution of mathematics to science, but rejects the contention that such a contribution is a reason for granting reality to mathematicalia. Section 1 introduces the distinction between ontological and epistemic readings of the indispensability argument. Section 2 outlines some of the main flaws of the first premise of the ontological reading. Section 3 advances the epistemic indispensability argument in view of both applied and pure mathematics. And Sect. 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Intended and Unintended Mathematics: The Case of the Lagrange Multipliers.Daniele Molinini - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (1):93-113.
    We can distinguish between two different ways in which mathematics is applied in science: when mathematics is introduced and developed in the context of a particular scientific application; when mathematics is used in the context of a particular scientific application but it has been developed independently from that application. Nevertheless, there might also exist intermediate cases in which mathematics is developed independently from an application but it is nonetheless introduced in the context of that particular application. In this paper I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dispensing with Facts, Substances, and Structures.Otávio Bueno - 2023 - American Philosophical Quarterly 60 (1):49-61.
    Despite the alleged roles played by structures, substances, and facts in mathematical and metaphysical theorizing, in this paper I provide a strategy to dispense with them. It is argued that one need not be committed to the existence of these posits nor with the metaphysically inflationary interpretations that support them. An alternative, deflationary approach is then sketched.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Weak Objectivity of Mathematics and Its Reasonable Effectiveness in Science.Daniele Molinini - 2020 - Axiomathes 30 (2):149-163.
    Philosophical analysis of mathematical knowledge are commonly conducted within the realist/antirealist dichotomy. Nevertheless, philosophers working within this dichotomy pay little attention to the way in which mathematics evolves and structures itself. Focusing on mathematical practice, I propose a weak notion of objectivity of mathematical knowledge that preserves the intersubjective character of mathematical knowledge but does not bear on a view of mathematics as a body of mind-independent necessary truths. Furthermore, I show how that the successful application of mathematics in science (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations