Switch to: References

Add citations

You must login to add citations.
  1. Independence of Boolean algebras and forcing.Miloš S. Kurilić - 2003 - Annals of Pure and Applied Logic 124 (1-3):179-191.
    If κω is a cardinal, a complete Boolean algebra is called κ-dependent if for each sequence bβ: β<κ of elements of there exists a partition of the unity, P, such that each pP extends bβ or bβ′, for κ-many βκ. The connection of this property with cardinal functions, distributivity laws, forcing and collapsing of cardinals is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Co-stationarity of the Ground Model.Natasha Dobrinen & Sy-David Friedman - 2006 - Journal of Symbolic Logic 71 (3):1029 - 1043.
    This paper investigates when it is possible for a partial ordering P to force Pκ(λ) \ V to be stationary in VP. It follows from a result of Gitik that whenever P adds a new real, then Pκ(λ) \ V is stationary in VP for each regular uncountable cardinal κ in VP and all cardinals λ > κ in VP [4]. However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Preservation theorems for Namba forcing.Osvaldo Guzmán, Michael Hrušák & Jindřich Zapletal - 2021 - Annals of Pure and Applied Logic 172 (2):102869.
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable minimal collapse functions at arbitrary projective levels.Vladimir Kanovei & Vassily Lyubetsky - 2019 - Journal of Symbolic Logic 84 (1):266-289.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Changing cofinalities and collapsing cardinals in models of set theory.Miloš S. Kurilić - 2003 - Annals of Pure and Applied Logic 120 (1-3):225-236.
    If a˜cardinal κ1, regular in the ground model M, is collapsed in the extension N to a˜cardinal κ0 and its new cofinality, ρ, is less than κ0, then, under some additional assumptions, each cardinal λ>κ1 less than cc/[κ1]<κ1) is collapsed to κ0 as well. If in addition N=M[f], where f : ρ→κ1 is an unbounded mapping, then N is a˜λ=κ0-minimal extension. This and similar results are applied to generalized forcing notions of Bukovský and Namba.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perfect tree forcings for singular cardinals.Natasha Dobrinen, Dan Hathaway & Karel Prikry - 2020 - Annals of Pure and Applied Logic 171 (9):102827.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathias and silver forcing parametrized by density.Giorgio Laguzzi, Heike Mildenberger & Brendan Stuber-Rousselle - 2023 - Archive for Mathematical Logic 62 (7):965-990.
    We define and investigate versions of Silver and Mathias forcing with respect to lower and upper density. We focus on properness, Axiom A, chain conditions, preservation of cardinals and adding Cohen reals. We find rough forcings that collapse $$2^\omega $$ 2 ω to $$\omega $$ ω, while others are surprisingly gentle. We also study connections between regularity properties induced by these parametrized forcing notions and the Baire property.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Problems in Singular Cardinals Combinatorics.Matthew Foreman - 2005 - Notre Dame Journal of Formal Logic 46 (3):309-322.
    This paper attempts to present and organize several problems in the theory of Singular Cardinals. The most famous problems in the area (bounds for the ℶ-function at singular cardinals) are well known to all mathematicians with even a rudimentary interest in set theory. However, it is less well known that the combinatorics of singular cardinals is a thriving area with results and problems that do not depend on a solution of the Singular Cardinals Hypothesis. We present here an annotated collection (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations