Switch to: References

Add citations

You must login to add citations.
  1. Frege proof system and TNC°.Gaisi Takeuti - 1998 - Journal of Symbolic Logic 63 (2):709 - 738.
    A Frege proof systemFis any standard system of prepositional calculus, e.g., a Hilbert style system based on finitely many axiom schemes and inference rules. An Extended Frege systemEFis obtained fromFas follows. AnEF-sequence is a sequence of formulas ψ1, …, ψκsuch that eachψiis either an axiom ofF, inferred from previous ψuand ψv by modus ponens or of the formq↔ φ, whereqis an atom occurring neither in φ nor in any of ψ1,…,ψi−1. Suchq↔ φ, is called an extension axiom andqa new extension (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege Proof System and TNC$^circ$.Gaisi Takeuti - 1998 - Journal of Symbolic Logic 63 (2):709-738.
    A Frege proof systemFis any standard system of prepositional calculus, e.g., a Hilbert style system based on finitely many axiom schemes and inference rules. An Extended Frege systemEFis obtained fromFas follows. AnEF-sequence is a sequence of formulas ψ1, …, ψκsuch that eachψiis either an axiom ofF, inferred from previous ψuand ψv by modus ponens or of the formq↔ φ, whereqis an atom occurring neither in φ nor in any of ψ1,…,ψi−1. Suchq↔ φ, is called an extension axiom andqa new extension (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Quantum deduction rules.Pavel Pudlák - 2009 - Annals of Pure and Applied Logic 157 (1):16-29.
    We define propositional quantum Frege proof systems and compare them with classical Frege proof systems.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantified propositional calculus and a second-order theory for NC1.Stephen Cook & Tsuyoshi Morioka - 2005 - Archive for Mathematical Logic 44 (6):711-749.
    Let H be a proof system for quantified propositional calculus (QPC). We define the Σqj-witnessing problem for H to be: given a prenex Σqj-formula A, an H-proof of A, and a truth assignment to the free variables in A, find a witness for the outermost existential quantifiers in A. We point out that the Σq1-witnessing problems for the systems G*1and G1 are complete for polynomial time and PLS (polynomial local search), respectively. We introduce and study the systems G*0 and G0, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Towards NP – P via proof complexity and search.Samuel R. Buss - 2012 - Annals of Pure and Applied Logic 163 (7):906-917.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A bounded arithmetic AID for Frege systems.Toshiyasu Arai - 2000 - Annals of Pure and Applied Logic 103 (1-3):155-199.
    In this paper we introduce a system AID of bounded arithmetic. The main feature of AID is to allow a form of inductive definitions, which was extracted from Buss’ propositional consistency proof of Frege systems F in Buss 3–29). We show that AID proves the soundness of F , and conversely any Σ 0 b -theorem in AID yields boolean sentences of which F has polysize proofs. Further we define Σ 1 b -faithful interpretations between AID+Σ 0 b -CA and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quasipolynomial Size Frege Proofs of Frankl’s Theorem on the Trace of Sets.James Aisenberg, Maria Luisa Bonet & Sam Buss - 2016 - Journal of Symbolic Logic 81 (2):687-710.
    We extend results of Bonet, Buss and Pitassi on Bondy’s Theorem and of Nozaki, Arai and Arai on Bollobás’ Theorem by proving that Frankl’s Theorem on the trace of sets has quasipolynomial size Frege proofs. For constant values of the parametert, we prove that Frankl’s Theorem has polynomial size AC0-Frege proofs from instances of the pigeonhole principle.
    Download  
     
    Export citation  
     
    Bookmark  
  • Plausibly hard combinatorial tautologies.Jeremy Avigad - manuscript
    We present a simple propositional proof system which consists of a single axiom schema and a single rule, and use this system to construct a sequence of combinatorial tautologies that, when added to any Frege system, p-simulates extended-Frege systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation