Switch to: References

Add citations

You must login to add citations.
  1. Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is precipitous" and strengthenings (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Making all cardinals almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.
    We examine combinatorial aspects and consistency strength properties of almost Ramsey cardinals. Without the Axiom of Choice, successor cardinals may be almost Ramsey. From fairly mild supercompactness assumptions, we construct a model of ZF + ${\neg {\rm AC}_\omega}$ in which every infinite cardinal is almost Ramsey. Core model arguments show that strong assumptions are necessary. Without successors of singular cardinals, we can weaken this to an equiconsistency of the following theories: “ZFC + There is a proper class of regular almost (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A remark on the tree property in a choiceless context.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (5-6):585-590.
    We show that the consistency of the theory “ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” follows from the consistency of a proper class of supercompact cardinals. This extends earlier results due to the author showing that the consistency of the theory “\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm ZF} + \neg{\rm AC}_\omega}$$\end{document} + Every successor cardinal is regular + Every limit cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Preserving levels of projective determinacy by tree forcings.Fabiana Castiblanco & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102918.
    We prove that various classical tree forcings—for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing—preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes are added to thin projective transitive relations by these forcings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation