Switch to: References

Add citations

You must login to add citations.
  1. Internalism and the Determinacy of Mathematics.Lavinia Picollo & Daniel Waxman - 2023 - Mind 132 (528):1028-1052.
    A major challenge in the philosophy of mathematics is to explain how mathematical language can pick out unique structures and acquire determinate content. In recent work, Button and Walsh have introduced a view they call ‘internalism’, according to which mathematical content is explained by internal categoricity results formulated and proven in second-order logic. In this paper, we critically examine the internalist response to the challenge and discuss the philosophical significance of internal categoricity results. Surprisingly, as we argue, while internalism arguably (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Internal Categoricity, Truth and Determinacy.Martin Fischer & Matteo Zicchetti - 2023 - Journal of Philosophical Logic 52 (5):1295-1325.
    This paper focuses on the categoricity of arithmetic and determinacy of arithmetical truth. Several ‘internal’ categoricity results have been discussed in the recent literature. Against the background of the philosophical position called internalism, we propose and investigate truth-theoretic versions of internal categoricity based on a primitive truth predicate. We argue for the compatibility of a primitive truth predicate with internalism and provide a novel argument for (and proof of) a truth-theoretic version of internal categoricity and internal determinacy with some positive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetic is Determinate.Zachary Goodsell - 2021 - Journal of Philosophical Logic 51 (1):127-150.
    Orthodoxy holds that there is a determinate fact of the matter about every arithmetical claim. Little argument has been supplied in favour of orthodoxy, and work of Field, Warren and Waxman, and others suggests that the presumption in its favour is unjustified. This paper supports orthodoxy by establishing the determinacy of arithmetic in a well-motivated modal plural logic. Recasting this result in higher-order logic reveals that even the nominalist who thinks that there are only finitely many things should think that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstractionism and Mathematical Singular Reference.Bahram Assadian - 2019 - Philosophia Mathematica 27 (2):177-198.
    ABSTRACT Is it possible to effect singular reference to mathematical objects in the abstractionist framework? I will argue that even if mathematical expressions pass the relevant syntactic and inferential tests to qualify as singular terms, that does not mean that their semantic function is to refer to a particular object. I will defend two arguments leading to this claim: the permutation argument for the referential indeterminacy of mathematical terms, and the argument from the semantic idleness of the terms introduced by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Physical Possibility and Determinate Number Theory.Sharon Berry - manuscript
    It's currently fashionable to take Putnamian model theoretic worries seriously for mathematics, but not for discussions of ordinary physical objects and the sciences. But I will argue that (under certain mild assumptions) merely securing determinate reference to physical possibility suffices to rule out nonstandard models of our talk of numbers. So anyone who accepts realist reference to physical possibility should not reject reference to the standard model of the natural numbers on Putnamian model theoretic grounds.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-Tightness in Class Theory and Second-Order Arithmetic.Alfredo Roque Freire & Kameryn J. Williams - forthcoming - Journal of Symbolic Logic:1-28.
    A theory T is tight if different deductively closed extensions of T (in the same language) cannot be bi-interpretable. Many well-studied foundational theories are tight, including $\mathsf {PA}$ [39], $\mathsf {ZF}$, $\mathsf {Z}_2$, and $\mathsf {KM}$ [6]. In this article we extend Enayat’s investigations to subsystems of these latter two theories. We prove that restricting the Comprehension schema of $\mathsf {Z}_2$ and $\mathsf {KM}$ gives non-tight theories. Specifically, we show that $\mathsf {GB}$ and $\mathsf {ACA}_0$ each admit different bi-interpretable extensions, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tracing Internal Categoricity.Jouko Väänänen - 2020 - Theoria 87 (4):986-1000.
    Theoria, Volume 87, Issue 4, Page 986-1000, August 2021.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The semantic plights of the ante-rem structuralist.Bahram Assadian - 2018 - Philosophical Studies 175 (12):1-20.
    A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante- rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Nominalism and Mathematical Objectivity.Guanglong Luo - 2022 - Axiomathes 32 (3):833-851.
    We observe that Putnam’s model-theoretic argument against determinacy of the concept of second-order quantification or that of the set is harmless to the nominalist. It serves as a good motivation for the nominalist philosophy of mathematics. But in the end it can lead to a serious challenge to the nominalist account of mathematical objectivity if some minimal assumptions about the relation between mathematical objectivity and logical objectivity are made. We consider three strategies the nominalist might take to meet this challenge, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Physical Possibility and Determinate Number Theory.Sharon Berry - 2021 - Philosophia Mathematica 29 (3):299-317.
    It is currently fashionable to take Putnamian model-theoretic worries seriously for mathematics, but not for discussions of ordinary physical objects and the sciences. However, I will argue that (under certain mild assumptions) merely securing determinate reference to physical possibility suffices to rule out the kind of nonstandard interpretations of our number talk Putnam invokes. So, anyone who accepts determinate reference to physical possibility should not reject determinate reference to the natural numbers on Putnamian model-theoretic grounds.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Descriptivism about the Reference of Set-Theoretic Expressions: Revisiting Putnam’s Model-Theoretic Arguments.Zeynep Soysal - 2020 - The Monist 103 (4):442-454.
    Putnam’s model-theoretic arguments for the indeterminacy of reference have been taken to pose a special problem for mathematical languages. In this paper, I argue that if one accepts that there are theory-external constraints on the reference of at least some expressions of ordinary language, then Putnam’s model-theoretic arguments for mathematical languages don’t go through. In particular, I argue for a kind of descriptivism about mathematical expressions according to which their reference is “anchored” in the reference of expressions of ordinary language. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Securing Arithmetical Determinacy.Sebastian G. W. Speitel - 2024 - Ergo: An Open Access Journal of Philosophy 11.
    The existence of non-standard models of first-order Peano-Arithmetic (PA) threatens to undermine the claim of the moderate mathematical realist that non-mysterious access to the natural number structure is possible on the basis of our best arithmetical theories. The move to logics stronger than FOL is denied to the moderate realist on the grounds that it merely shifts the indeterminacy “one level up” into the meta-theory by, illegitimately, assuming the determinacy of the notions needed to formulate such logics. This paper argues (...)
    Download  
     
    Export citation  
     
    Bookmark