Switch to: References

Add citations

You must login to add citations.
  1. Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Not All Computational Methods Are Effective Methods.Mark Sprevak - 2022 - Philosophies 7 (5):113.
    An effective method is a computational method that might, in principle, be executed by a human. In this paper, I argue that there are methods for computing that are not effective methods. The examples I consider are taken primarily from quantum computing, but these are only meant to be illustrative of a much wider class. Quantum inference and quantum parallelism involve steps that might be implemented in multiple physical systems, but cannot be implemented, or at least not at will, by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Technology and Mathematics.Sven Ove Hansson - 2020 - Philosophy and Technology 33 (1):117-139.
    In spite of their practical importance, the connections between technology and mathematics have not received much scholarly attention. This article begins by outlining how the technology–mathematics relationship has developed, from the use of simple aide-mémoires for counting and arithmetic, via the use of mathematics in weaving, building and other trades, and the introduction of calculus to solve technological problems, to the modern use of computers to solve both technological and mathematical problems. Three important philosophical issues emerge from this historical résumé: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • How to Make a Meaningful Comparison of Models: The Church–Turing Thesis Over the Reals.Maël Pégny - 2016 - Minds and Machines 26 (4):359-388.
    It is commonly believed that there is no equivalent of the Church–Turing thesis for computation over the reals. In particular, computational models on this domain do not exhibit the convergence of formalisms that supports this thesis in the case of integer computation. In the light of recent philosophical developments on the different meanings of the Church–Turing thesis, and recent technical results on analog computation, I will show that this current belief confounds two distinct issues, namely the extension of the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Malament–Hogarth Machines and Tait’s Axiomatic Conception of Mathematics.Sharon Berry - 2014 - Erkenntnis 79 (4):893-907.
    In this paper I will argue that Tait’s axiomatic conception of mathematics implies that it is in principle impossible to be justified in believing a mathematical statement without being justified in believing that statement to be provable. I will then show that there are possible courses of experience which would justify acceptance of a mathematical statement without justifying belief that this statement is provable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Note on the Physical Possibility of Transfinite Computation.Wayne Aitken & Jeffrey A. Barrett - 2010 - British Journal for the Philosophy of Science 61 (4):867-874.
    In this note, we consider constraints on the physical possibility of transfinite Turing machines that arise from how one models the continuous structure of space and time in one's best physical theories. We conclude by suggesting a version of Church's thesis appropriate as an upper bound for physical computation given how space and time are modeled on our current physical theories.
    Download  
     
    Export citation  
     
    Bookmark