Switch to: References

Add citations

You must login to add citations.
  1. Classical Statistics and Statistical Learning in Imaging Neuroscience.Danilo Bzdok - unknown
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Personalizing transcranial direct current stimulation for treating major depressive disorder.Stephan Goerigk - unknown
    Transcranial direct current stimulation is a safe and efficient intervention for treating major depressive disorder. However, research has suggested heterogeneity of response between patients. The emerging field of precision psychiatry aims to use statistical modeling of multi-modal data to tailor treatment to the single patient. To this end, more in-depth analysis of randomized controlled trials will be relevant due to limited availability of other large datasets with high phenotypic detail and to develop tools for personalization within counterfactually controlled environments to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Data Mining the Brain to Decode the Mind.Daniel Weiskopf - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    In recent years, neuroscience has begun to transform itself into a “big data” enterprise with the importation of computational and statistical techniques from machine learning and informatics. In addition to their translational applications such as brain-computer interfaces and early diagnosis of neuropathology, these tools promise to advance new solutions to longstanding theoretical quandaries. Here I critically assess whether these promises will pay off, focusing on the application of multivariate pattern analysis (MVPA) to the problem of reverse inference. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Automated Laplacean Demon: How ML Challenges Our Views on Prediction and Explanation.Sanja Srećković, Andrea Berber & Nenad Filipović - 2021 - Minds and Machines 32 (1):159-183.
    Certain characteristics make machine learning a powerful tool for processing large amounts of data, and also particularly unsuitable for explanatory purposes. There are worries that its increasing use in science may sideline the explanatory goals of research. We analyze the key characteristics of ML that might have implications for the future directions in scientific research: epistemic opacity and the ‘theory-agnostic’ modeling. These characteristics are further analyzed in a comparison of ML with the traditional statistical methods, in order to demonstrate what (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Controversies around Neuroeconomics: Empirical, Methodological and Philosophical Issues.Daniel Serra - 2023 - Revue de Philosophie Économique 23 (2):135-193.
    À la fin des années 1990, plusieurs tendances convergentes en économie, psychologie et neuroscience ont préparé le terrain pour la naissance d’un nouveau champ scientifique qualifié de « neuroéconomie ». Comme pour toute discipline émergente – pensons par exemple à l’économie mathématique, l’économétrie ou l’économie expérimentale en d’autres temps – la neuroéconomie est plutôt controversée en économie. Elle soulève un grand nombre de questions d’ordre empirique, méthodologique et philosophiques donnant lieu à des débats et controverses que l’article identifie et discute (...)
    Download  
     
    Export citation  
     
    Bookmark