Switch to: References

Citations of:

On cardinal utility

Theory and Decision 10 (1-4):131-145 (1979)

Add citations

You must login to add citations.
  1. Approaches to cardinal utility.A. Camacho - 1980 - Theory and Decision 12 (4):359-379.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The repetitions approach to characterize cardinal utility.Peter Wakker - 1986 - Theory and Decision 20 (1):33-40.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Additive representation of separable preferences over infinite products.Marcus Pivato - 2014 - Theory and Decision 77 (1):31-83.
    Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }$$\end{document} be a set of outcomes, and let I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{I }$$\end{document} be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} on XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }^\mathcal{I }$$\end{document} admits an additive representation. That is: there exists a linearly ordered abelian group R\documentclass[12pt]{minimal} (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations