Switch to: References

Add citations

You must login to add citations.
  1. Axioms for Type-Free Subjective Probability.Cezary Cieśliński, Leon Horsten & Hannes Leitgeb - 2024 - Review of Symbolic Logic 17 (2):493-508.
    We formulate and explore two basic axiomatic systems of type-free subjective probability. One of them explicates a notion of finitely additive probability. The other explicates a concept of infinitely additive probability. It is argued that the first of these systems is a suitable background theory for formally investigating controversial principles about type-free subjective probability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The revision theory of truth.Philip Kremer - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Limits in the Revision Theory: More Than Just Definite Verdicts.Catrin Campbell-Moore - 2019 - Journal of Philosophical Logic 48 (1):11-35.
    We present a new proposal for what to do at limits in the revision theory. The usual criterion for a limit stage is that it should agree with any definite verdicts that have been brought about before that stage. We suggest that one should not only consider definite verdicts that have been brought about but also more general properties; in fact any closed property can be considered. This more general framework is required if we move to considering revision theories for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Paradoxes and contemporary logic.Andrea Cantini - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Triangulating non-archimedean probability.Hazel Brickhill & Leon Horsten - 2018 - Review of Symbolic Logic 11 (3):519-546.
    We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.
    Download  
     
    Export citation  
     
    Bookmark   5 citations