Switch to: References

Add citations

You must login to add citations.
  1. Second order theories with ordinals and elementary comprehension.Gerhard Jäger & Thomas Strahm - 1995 - Archive for Mathematical Logic 34 (6):345-375.
    We study elementary second order extensions of the theoryID 1 of non-iterated inductive definitions and the theoryPA Ω of Peano arithmetic with ordinals. We determine the exact proof-theoretic strength of those extensions and their natural subsystems, and we relate them to subsystems of analysis with arithmetic comprehension plusΠ 1 1 comprehension and bar induction without set parameters.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Extending constructive operational set theory by impredicative principles.Andrea Cantini - 2011 - Mathematical Logic Quarterly 57 (3):299-322.
    We study constructive set theories, which deal with operations applying both to sets and operations themselves. Our starting point is a fully explicit, finitely axiomatized system ESTE of constructive sets and operations, which was shown in 10 to be as strong as PA. In this paper we consider extensions with operations, which internally represent description operators, unbounded set quantifiers and local fixed point operators. We investigate the proof theoretic strength of the resulting systems, which turn out to be impredicative . (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fixed points in Peano arithmetic with ordinals.Gerhard Jäger - 1993 - Annals of Pure and Applied Logic 60 (2):119-132.
    Jäger, G., Fixed points in Peano arithmetic with ordinals, Annals of Pure and Applied Logic 60 119-132. This paper deals with some proof-theoretic aspects of fixed point theories over Peano arithmetic with ordinals. It studies three such theories which differ in the principles which are available for induction on the natural numbers and ordinals. The main result states that there is a natural theory in this framework which is a conservative extension of Peano arithmeti.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Extending the first-order theory of combinators with self-referential truth.Andrea Cantini - 1993 - Journal of Symbolic Logic 58 (2):477-513.
    The aim of this paper is to introduce a formal system STW of self-referential truth, which extends the classical first-order theory of pure combinators with a truth predicate and certain approximation axioms. STW naturally embodies the mechanisms of general predicate application/abstraction on a par with function application/abstraction; in addition, it allows non-trivial constructions, inspired by generalized recursion theory. As a consequence, STW provides a smooth inner model for Myhill's systems with levels of implication.
    Download  
     
    Export citation  
     
    Bookmark   3 citations