Switch to: References

Add citations

You must login to add citations.
  1. Power function on stationary classes.Moti Gitik & Carmi Merimovich - 2006 - Annals of Pure and Applied Logic 140 (1):75-103.
    We show that under certain large cardinal requirements there is a generic extension in which the power function behaves differently on different stationary classes. We achieve this by doing an Easton support iteration of the Radin on extenders forcing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Global singularization and the failure of SCH.Radek Honzik - 2010 - Annals of Pure and Applied Logic 161 (7):895-915.
    We say that κ is μ-hypermeasurable for a cardinal μ≥κ+ if there is an embedding j:V→M with critical point κ such that HV is included in M and j>μ. Such a j is called a witnessing embedding.Building on the results in [7], we will show that if V satisfies GCH and F is an Easton function from the regular cardinals into cardinals satisfying some mild restrictions, then there exists a cardinal-preserving forcing extension V* where F is realised on all V-regular (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towers and clubs.Pierre Matet - 2021 - Archive for Mathematical Logic 60 (6):683-719.
    We revisit several results concerning club principles and nonsaturation of the nonstationary ideal, attempting to improve them in various ways. So we typically deal with a ideal J extending the nonstationary ideal on a regular uncountable cardinal \, our goal being to witness the nonsaturation of J by the existence of towers ).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two‐cardinal diamond star.Pierre Matet - 2014 - Mathematical Logic Quarterly 60 (4-5):246-265.
    Our main results are: (A) It is consistent relative to a large cardinal that holds but fails. (B) If holds and are two infinite cardinals such that and λ carries a good scale, then holds. (C) If are two cardinals such that κ is λ‐Shelah and, then there is no good scale for λ.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.
    Download  
     
    Export citation  
     
    Bookmark   6 citations