Switch to: References

Add citations

You must login to add citations.
  1. Satisfiability is False Intuitionistically: A Question from Dana Scott.Charles McCarty - 2020 - Studia Logica 108 (4):803-813.
    Satisfiability or Sat\ is the metatheoretic statementEvery formally intuitionistically consistent set of first-order sentences has a model.The models in question are the Tarskian relational structures familiar from standard first-order model theory, but here treated within intuitionistic metamathematics. We prove that both IZF, intuitionistic Zermelo–Fraenkel set theory, and HAS, second-order Heyting arithmetic, prove Sat\ to be false outright. Following the lead of Carter :75–95, 2008), we then generalize this result to some provably intermediate first-order logics, including the Rose logic. These metatheorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantic Completeness of First-Order Theories in Constructive Reverse Mathematics.Christian Espíndola - 2016 - Notre Dame Journal of Formal Logic 57 (2):281-286.
    We introduce a general notion of semantic structure for first-order theories, covering a variety of constructions such as Tarski and Kripke semantics, and prove that, over Zermelo–Fraenkel set theory, the completeness of such semantics is equivalent to the Boolean prime ideal theorem. Using a result of McCarty, we conclude that the completeness of Kripke semantics is equivalent, over intuitionistic Zermelo–Fraenkel set theory, to the Law of Excluded Middle plus BPI. Along the way, we also prove the equivalence, over ZF, between (...)
    Download  
     
    Export citation  
     
    Bookmark