Switch to: References

Add citations

You must login to add citations.
  1. On Categorical Equivalence of Weak Monadic Residuated Distributive Lattices and Weak Monadic c-Differential Residuated Distributive Lattices.Jun Tao Wang, Yan Hong She, Peng Fei He & Na Na Ma - 2023 - Studia Logica 111 (3):361-390.
    The category \(\mathbb {DRDL}{'}\), whose objects are c-differential residuated distributive lattices satisfying the condition \(\textbf{CK}\), is the image of the category \(\mathbb {RDL}\), whose objects are residuated distributive lattices, under the categorical equivalence \(\textbf{K}\) that is constructed in Castiglioni et al. (Stud Log 90:93–124, 2008). In this paper, we introduce weak monadic residuated lattices and study some of their subvarieties. In particular, we use the functor \(\textbf{K}\) to relate the category \(\mathbb {WMRDL}\), whose objects are weak monadic residuated distributive lattices, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relatively compatible operations in BCK-algebras and some related algebras.N. Lubomirsky, H. J. San Martín & W. J. Zuluaga Botero - 2017 - Logic Journal of the IGPL 25 (3):348-364.
    Let |$\textbf{A}$| be a |$BCK$|-algebra and |$f:A^{k}\rightarrow A$| a function. The main goal of this article is to give a necessary and sufficient condition for |$f$| to be compatible with respect to every relative congruence of |$\textbf{A}$|⁠. We extend this result in some related algebras, as e.g. in pocrims.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On Principal Congruences in Distributive Lattices with a Commutative Monoidal Operation and an Implication.Ramon Jansana & Hernán Javier San Martín - 2019 - Studia Logica 107 (2):351-374.
    In this paper we introduce and study a variety of algebras that properly includes integral distributive commutative residuated lattices and weak Heyting algebras. Our main goal is to give a characterization of the principal congruences in this variety. We apply this description in order to study compatible functions.
    Download  
     
    Export citation  
     
    Bookmark