Switch to: References

Add citations

You must login to add citations.
  1. Gentzen systems and decision procedures for relevant logics.Steve Giambrone - 1982 - Bulletin of the Section of Logic 11 (3/4):169-174.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Conservative Negation Extension of Positive Semilattice Logic Without the Finite Model Property.Yale Weiss - 2020 - Studia Logica 109 (1):125-136.
    In this article, I present a semantically natural conservative extension of Urquhart’s positive semilattice logic with a sort of constructive negation. A subscripted sequent calculus is given for this logic and proofs of its soundness and completeness are sketched. It is shown that the logic lacks the finite model property. I discuss certain questions Urquhart has raised concerning the decision problem for the positive semilattice logic in the context of this logic and pose some problems for further research.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • HYPE: A System of Hyperintensional Logic.Hannes Leitgeb - 2019 - Journal of Philosophical Logic 48 (2):305-405.
    This article introduces, studies, and applies a new system of logic which is called ‘HYPE’. In HYPE, formulas are evaluated at states that may exhibit truth value gaps and truth value gluts. Simple and natural semantic rules for negation and the conditional operator are formulated based on an incompatibility relation and a partial fusion operation on states. The semantics is worked out in formal and philosophical detail, and a sound and complete axiomatization is provided both for the propositional and the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Two-dimensional adventures.Lloyd Humberstone - 2004 - Philosophical Studies 118 (1-2):17--65.
    This paper recalls some applications of two-dimensional modal logic from the 1980s, including work on the logic of Actually and on a somewhat idealized version of the indicative/subjunctive distinction, as well as on absolute and relative necessity. There is some discussion of reactions this material has aroused in commentators since. We also survey related work by Leslie Tharp from roughly the same period.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • A Characteristic Frame for Positive Intuitionistic and Relevance Logic.Yale Weiss - 2020 - Studia Logica 109 (4):687-699.
    I show that the lattice of the positive integers ordered by division is characteristic for Urquhart’s positive semilattice relevance logic; that is, a formula is valid in positive semilattice relevance logic if and only if it is valid in all models over the positive integers ordered by division. I show that the same frame is characteristic for positive intuitionistic logic, where the class of models over it is restricted to those satisfying a heredity condition. The results of this article highlight (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relevance Logic: Problems Open and Closed.Alasdair Urquhart - 2016 - Australasian Journal of Logic 13 (1):11-20.
    I discuss a collection of problems in relevance logic. The main problems discussed are: the decidability of the positive semilattice system, decidability of the fragments of R in a restricted number of variables, and the complexity of the decision problem for the implicational fragment of R. Some related problems are discussed along the way.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Translations between linear and tree natural deduction systems for relevant logics.Shawn Standefer - 2021 - Review of Symbolic Logic 14 (2):285 - 306.
    Anderson and Belnap presented indexed Fitch-style natural deduction systems for the relevant logics R, E, and T. This work was extended by Brady to cover a range of relevant logics. In this paper I present indexed tree natural deduction systems for the Anderson–Belnap–Brady systems and show how to translate proofs in one format into proofs in the other, which establishes the adequacy of the tree systems.
    Download  
     
    Export citation  
     
    Bookmark  
  • On semilattice relevant logics.Ryo Kashima - 2003 - Mathematical Logic Quarterly 49 (4):401.
    The semilattice relevant logics ∪R, ∪T, ∪RW, and ∪TW are defined by semilattice models in which conjunction and disjunction are interpreted in a natural way. For each of them, there is a cut-free labelled sequent calculus with plural succedents . We prove that these systems are equivalent, with respect to provable formulas, to the restricted systems with single succedents . Moreover, using this equivalence, we give a new Hilbert-style axiomatizations for ∪R and ∪T and prove equivalence between two semantics for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proof Theories for Semilattice Logics.Steve Giambrone & Alasdaire Urquhart - 1987 - Mathematical Logic Quarterly 33 (5):433-439.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On purported Gentzen formulations of two positive relevent logics.Steve Giambrone - 1985 - Studia Logica 44 (3):233 - 236.
    [10] offers two (cut-free) subscripted Gentzen systems, G 2 T + and G 2 R +, which are claimed to be equivalent in an appropriate sense to the positive relevant logics T + and R +, respectively. In this paper we show that that claim is false. We also show that the argument in [10] for the further claim that cut and/or modus ponens is admissible in two other subscripted Gentzen systems, G 1 T + and G 1 R +, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Four relevant Gentzen systems.Steve Giambrone & Aleksandar Kron - 1987 - Studia Logica 46 (1):55 - 71.
    This paper is a study of four subscripted Gentzen systems G u R +, G u T +, G u RW + and G u TW +. [16] shows that the first three are equivalent to the semilattice relevant logics u R +, u T + and u RW + and conjectures that G u TW + is, equivalent to u TW +. Here we prove Cut Theorems for these systems, and then show that modus ponens is admissible — which (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations