Switch to: References

Add citations

You must login to add citations.
  1. Ontology and logic: remarks on hartry field's anti-platonist philosophy of mathematics.Michael D. Resnik - 1985 - History and Philosophy of Logic 6 (1):191-209.
    In Science without numbers Hartry Field attempted to formulate a nominalist version of Newtonian physics?one free of ontic commitment to numbers, functions or sets?sufficiently strong to have the standard platonist version as a conservative extension. However, when uses for abstract entities kept popping up like hydra heads, Field enriched his logic to avoid them. This paper reviews some of Field's attempts to deflate his ontology by inflating his logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Tharp's 'Myth and Mathematics'.Charles Chihara - 1989 - Synthese 81 (2):153 - 165.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic, ontology, mathematical practice.Stewart Shapiro - 1989 - Synthese 79 (1):13 - 50.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Nominalistic metalogic.Ken Akiba - 1998 - Journal of Philosophical Logic 27 (1):35-47.
    This paper offers a novel method for nominalizing metalogic without transcending first-order reasoning about physical tokens (inscriptions, etc.) of proofs. A kind of double-negation scheme is presented which helps construct, for any platonistic statement in metalogic, a nominalistic statement which has the same assertability condition as the former. For instance, to the platonistic statement "there is a (platonistic) proof of A in deductive system D" corresponds the nominalistic statement "there is no (metalogical) proof token in (possibly informal) set theory for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical physical abstraction.Ernest W. Adams - 1993 - Erkenntnis 38 (2):145 - 167.
    An informal theory is set forth of relations between abstract entities, includingcolors, physical quantities, times, andplaces in space, and the concrete things thathave them, or areat orin them, based on the assumption that there are close analogies between these relations and relations between abstractsets and the concrete things that aremembers of them. It is suggested that even standard scientific usage of these abstractions presupposes principles that are analogous to postulates of abstraction, identity, and other fundamental principles of set theory. Also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation