Switch to: References

Add citations

You must login to add citations.
  1. The logics of orthoalgebras.Maria Luisa Dalla Chiara & Roberto Giuntini - 1995 - Studia Logica 55 (1):3-22.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Łukasiewicz Operations in Fuzzy Set and Many-Valued Representations of Quantum Logics.Jarosław Pykacz - 2000 - Foundations of Physics 30 (9):1503-1524.
    It, is shown that Birkhoff –von Neumann quantum logic (i.e., an orthomodular lattice or poset) possessing an ordering set of probability measures S can be isomorphically represented as a family of fuzzy subsets of S or, equivalently, as a family of propositional functions with arguments ranging over S and belonging to the domain of infinite-valued Łukasiewicz logic. This representation endows BvN quantum logic with a new pair of partially defined binary operations, different from the order-theoretic ones: Łukasiewicz intersection and union (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • MV and Heyting Effect Algebras.D. J. Foulis - 2000 - Foundations of Physics 30 (10):1687-1706.
    We review the fact that an MV-algebra is the same thing as a lattice-ordered effect algebra in which disjoint elements are orthogonal. An HMV-algebra is an MV-effect algebra that is also a Heyting algebra and in which the Heyting center and the effect-algebra center coincide. We show that every effect algebra with the generalized comparability property is an HMV-algebra. We prove that, for an MV-effect algebra E, the following conditions are mutually equivalent: (i) E is HMV, (ii) E has a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Common Logic of Quantum Universe—Part I: The Case of Non-relativistic Quantum Mechanics.Massimo Tessarotto & Claudio Cremaschini - 2022 - Foundations of Physics 52 (1):1-38.
    One of the most challenging and fascinating issue in mathematical and theoretical physics concerns the possibility of identifying the logic underlying the so-called quantum universe, i.e., Quantum Mechanics and Quantum Gravity. Besides the sheer difficulty of the problem, inherent in the actual formulation of Quantum Mechanics—and especially of Quantum Gravity—to be used for such a task, a crucial aspect lies in the identification of the appropriate axiomatic logical proposition calculus to be associated to such theories. In this paper the issue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the nature of continuous physical quantities in classical and quantum mechanics.Hans Halvorson - 2001 - Journal of Philosophical Logic 30 (1):27-50.
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller, have thought that the answer to this question is No - that the status of individual continuous quantities is very different in quantum mechanics than in classical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations