Switch to: References

Add citations

You must login to add citations.
  1. Against the singularity hypothesis.David Thorstad - forthcoming - Philosophical Studies:1-25.
    The singularity hypothesis is a radical hypothesis about the future of artificial intelligence on which self-improving artificial agents will quickly become orders of magnitude more intelligent than the average human. Despite the ambitiousness of its claims, the singularity hypothesis has been defended at length by leading philosophers and artificial intelligence researchers. In this paper, I argue that the singularity hypothesis rests on scientifically implausible growth assumptions. I show how leading philosophical defenses of the singularity hypothesis (Chalmers 2010, Bostrom 2014) fail (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Human ≠ AGI.Roman Yampolskiy - manuscript
    Terms Artificial General Intelligence (AGI) and Human-Level Artificial Intelligence (HLAI) have been used interchangeably to refer to the Holy Grail of Artificial Intelligence (AI) research, creation of a machine capable of achieving goals in a wide range of environments. However, widespread implicit assumption of equivalence between capabilities of AGI and HLAI appears to be unjustified, as humans are not general intelligences. In this paper, we will prove this distinction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Twenty Years Beyond the Turing Test: Moving Beyond the Human Judges Too.José Hernández-Orallo - 2020 - Minds and Machines 30 (4):533-562.
    In the last 20 years the Turing test has been left further behind by new developments in artificial intelligence. At the same time, however, these developments have revived some key elements of the Turing test: imitation and adversarialness. On the one hand, many generative models, such as generative adversarial networks, build imitators under an adversarial setting that strongly resembles the Turing test. The term “Turing learning” has been used for this kind of setting. On the other hand, AI benchmarks are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Building Thinking Machines by Solving Animal Cognition Tasks.Matthew Crosby - 2020 - Minds and Machines 30 (4):589-615.
    In ‘Computing Machinery and Intelligence’, Turing, sceptical of the question ‘Can machines think?’, quickly replaces it with an experimentally verifiable test: the imitation game. I suggest that for such a move to be successful the test needs to be relevant, expansive, solvable by exemplars, unpredictable, and lead to actionable research. The Imitation Game is only partially successful in this regard and its reliance on language, whilst insightful for partially solving the problem, has put AI progress on the wrong foot, prescribing (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations