Switch to: References

Add citations

You must login to add citations.
  1. ∑2 Induction and infinite injury priority arguments, part II Tame ∑2 coding and the jump operator.C. T. Chong & Yue Yang - 1997 - Annals of Pure and Applied Logic 87 (2):103-116.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fragments of Kripke–Platek set theory and the metamathematics of $$\alpha $$ α -recursion theory.Sy-David Friedman, Wei Li & Tin Lok Wong - 2016 - Archive for Mathematical Logic 55 (7-8):899-924.
    The foundation scheme in set theory asserts that every nonempty class has an ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}-minimal element. In this paper, we investigate the logical strength of the foundation principle in basic set theory and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-recursion theory. We take KP set theory without foundation as the base theory. We show that KP-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document} + Π1\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The minimal e-degree problem in fragments of Peano arithmetic.M. M. Arslanov, C. T. Chong, S. B. Cooper & Y. Yang - 2005 - Annals of Pure and Applied Logic 131 (1-3):159-175.
    We study the minimal enumeration degree problem in models of fragments of Peano arithmetic () and prove the following results: in any model M of Σ2 induction, there is a minimal enumeration degree if and only if M is a nonstandard model. Furthermore, any cut in such a model has minimal e-degree. By contrast, this phenomenon fails in the absence of Σ2 induction. In fact, whether every Σ2 cut has minimal e-degree is independent of the Σ2 bounding principle.
    Download  
     
    Export citation  
     
    Bookmark  
  • Friedberg Numbering in Fragments of Peano Arithmetic and α-Recursion Theory.Wei Li - 2013 - Journal of Symbolic Logic 78 (4):1135-1163.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How Strong is Ramsey’s Theorem If Infinity Can Be Weak?Leszek Aleksander Kołodziejczyk, Katarzyna W. Kowalik & Keita Yokoyama - 2023 - Journal of Symbolic Logic 88 (2):620-639.
    We study the first-order consequences of Ramsey’s Theorem fork-colourings ofn-tuples, for fixed$n, k \ge 2$, over the relatively weak second-order arithmetic theory$\mathrm {RCA}^*_0$. Using the Chong–Mourad coding lemma, we show that in a model of$\mathrm {RCA}^*_0$that does not satisfy$\Sigma ^0_1$induction,$\mathrm {RT}^n_k$is equivalent to its relativization to any proper$\Sigma ^0_1$-definable cut, so its truth value remains unchanged in all extensions of the model with the same first-order universe.We give a complete axiomatization of the first-order consequences of$\mathrm {RCA}^*_0 + \mathrm {RT}^n_k$for$n \ge (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weaker cousins of Ramsey's theorem over a weak base theory.Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk & Katarzyna W. Kowalik - 2021 - Annals of Pure and Applied Logic 172 (10):103028.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Σ2 Induction and infinite injury priority argument, Part I: Maximal sets and the jump operator.C. T. Chong & Yue Yang - 1998 - Journal of Symbolic Logic 63 (3):797 - 814.
    Related Works: Part II: C. T. Chong, Yue Yang. $\Sigma_2$ Induction and Infinite Injury Priority Argument, Part II: Tame $\Sigma_2$ Coding and the Jump Operator. Ann. Pure Appl. Logic, vol. 87, no. 2, 103--116. Mathematical Reviews : MR1490049 Part III: C. T. Chong, Lei Qian, Theodore A. Slaman, Yue Yang. $\Sigma_2$ Induction and Infinite Injury Priority Argument, Part III: Prompt Sets, Minimal Paries and Shoenfield's Conjecture. Mathematical Reviews : MR1818378.
    Download  
     
    Export citation  
     
    Bookmark   2 citations