Switch to: References

Add citations

You must login to add citations.
  1. Van Douwen’s diagram for dense sets of rationals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 143 (1-3):54-69.
    We investigate cardinal invariants related to the structure of dense sets of rationals modulo the nowhere dense sets. We prove that , thus dualizing the already known [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183 59–80, Theorem 3.6]. We also show the consistency of each of and . Our results answer four questions of Balcar, Hernández and Hrušák [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Around splitting and reaping for partitions of ω.Hiroaki Minami - 2010 - Archive for Mathematical Logic 49 (4):501-518.
    We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that ${\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}}$ and ${\mathfrak{s}_{d}\geq\mathfrak{b}}$ . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}$ and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}$ . To prove the consistency ${\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}$ and ${\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})}$ we introduce new cardinal invariants ${\mathfrak{r}_{pair}}$ and ${\mathfrak{s}_{pair}}$ . We also study the relation between ${\mathfrak{r}_{pair}, \mathfrak{s}_{pair}}$ and other cardinal invariants. We show (...)
    Download  
     
    Export citation  
     
    Bookmark