Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)How is it that infinitary methods can be applied to finitary mathematics? Gödel's T: a case study.Andreas Weiermann - 1998 - Journal of Symbolic Logic 63 (4):1348-1370.
    Inspired by Pohlers' local predicativity approach to Pure Proof Theory and Howard's ordinal analysis of bar recursion of type zero we present a short, technically smooth and constructive strong normalization proof for Gödel's system T of primitive recursive functionals of finite types by constructing an ε 0 -recursive function [] 0 : T → ω so that a reduces to b implies [a] $_0 > [b]_0$ . The construction of [] 0 is based on a careful analysis of the Howard-Schütte (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Proving consistency of equational theories in bounded arithmetic.Arnold Beckmann† - 2002 - Journal of Symbolic Logic 67 (1):279-296.
    We consider equational theories for functions defined via recursion involving equations between closed terms with natural rules based on recursive definitions of the function symbols. We show that consistency of such equational theories can be proved in the weak fragment of arithmetic S 1 2 . In particular this solves an open problem formulated by TAKEUTI (c.f. [5, p.5 problem 9.]).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A term rewriting characterization of the polytime functions and related complexity classes.Arnold Beckmann & Andreas Weiermann - 1996 - Archive for Mathematical Logic 36 (1):11-30.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A term rewriting characterization of the functions computable in polynomial space.Isabel Oitavem - 2002 - Archive for Mathematical Logic 41 (1):35-47.
    We give a term rewriting characterization of the polyspace functions. Our work follows investigations on term rewriting characterizations of some classes of (sub-) recursive functions as initiated by Cichon and Weiermann [4] and continued by Beckmann and Weiermann [1].The main novelty of this paper is a technique for reformulating recursion schemes. The aim of this technique is to provide rewriting rules which give rise to rewriting chains whose terms are suitably bounded. This bounding is crucial when dealing with computational classes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Some results on cut-elimination, provable well-orderings, induction and reflection.Toshiyasu Arai - 1998 - Annals of Pure and Applied Logic 95 (1-3):93-184.
    We gather the following miscellaneous results in proof theory from the attic.1. 1. A provably well-founded elementary ordering admits an elementary order preserving map.2. 2. A simple proof of an elementary bound for cut elimination in propositional calculus and its applications to separation problem in relativized bounded arithmetic below S21.3. 3. Equivalents for Bar Induction, e.g., reflection schema for ω logic.4. 4. Direct computations in an equational calculus PRE and a decidability problem for provable inequations in PRE.5. 5. Intuitionistic fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations