Switch to: References

Add citations

You must login to add citations.
  1. Implicational logics III: completeness properties.Petr Cintula & Carles Noguera - 2018 - Archive for Mathematical Logic 57 (3-4):391-420.
    This paper presents an abstract study of completeness properties of non-classical logics with respect to matricial semantics. Given a class of reduced matrix models we define three completeness properties of increasing strength and characterize them in several useful ways. Some of these characterizations hold in absolute generality and others are for logics with generalized implication or disjunction connectives, as considered in the previous papers. Finally, we consider completeness with respect to matrices with a linear dense order and characterize it in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Implicational Tonoid Logics: Algebraic and Relational Semantics.Eunsuk Yang & J. Michael Dunn - 2021 - Logica Universalis 15 (4):435-456.
    This paper combines two classes of generalized logics, one of which is the class of weakly implicative logics introduced by Cintula and the other of which is the class of gaggle logics introduced by Dunn. For this purpose we introduce implicational tonoid logics. More precisely, we first define implicational tonoid logics in general and examine their relation to weakly implicative logics. We then provide algebraic semantics for implicational tonoid logics. Finally, we consider relational semantics, called Routley–Meyer–style semantics, for finitary those (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extension Properties and Subdirect Representation in Abstract Algebraic Logic.Tomáš Lávička & Carles Noguera - 2018 - Studia Logica 106 (6):1065-1095.
    This paper continues the investigation, started in Lávička and Noguera : 521–551, 2017), of infinitary propositional logics from the perspective of their algebraic completeness and filter extension properties in abstract algebraic logic. If follows from the Lindenbaum Lemma used in standard proofs of algebraic completeness that, in every finitary logic, intersection-prime theories form a basis of the closure system of all theories. In this article we consider the open problem of whether these properties can be transferred to lattices of filters (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural Completeness in Many-Valued Logics with Rational Constants.Joan Gispert, Zuzana Haniková, Tommaso Moraschini & Michał Stronkowski - 2022 - Notre Dame Journal of Formal Logic 63 (3):261-299.
    The logics RŁ, RP, and RG have been obtained by expanding Łukasiewicz logic Ł, product logic P, and Gödel–Dummett logic G with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in Ł, P, and G. Namely, RŁ is hereditarily structurally complete. RP is algebraized by the variety of rational product algebras that we show to be Q-universal. We provide a base of admissible rules (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A New Hierarchy of Infinitary Logics in Abstract Algebraic Logic.Carles Noguera & Tomáš Lávička - 2017 - Studia Logica 105 (3):521-551.
    In this article we investigate infinitary propositional logics from the perspective of their completeness properties in abstract algebraic logic. It is well-known that every finitary logic is complete with respect to its relatively subdirectly irreducible models. We identify two syntactical notions formulated in terms of intersection-prime theories that follow from finitarity and are sufficient conditions for the aforementioned completeness properties. We construct all the necessary counterexamples to show that all these properties define pairwise different classes of logics. Consequently, we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Birkhoff’s and Mal’cev’s Theorems for Implicational Tonoid Logics.Eunsuk Yang - 2023 - Studia Logica 111 (3):501-519.
    In the context of implicational tonoid logics, this paper investigates analogues of Birkhoff’s two theorems, the so-called subdirect representation and varieties theorems, and of Mal’cev’s quasi-varieties theorem. More precisely, we first recall the class of implicational tonoid logics. Next, we establish the subdirect product representation theorem for those logics and then consider some more related results such as completeness. Thirdly, we consider the varieties theorem for them. Finally, we introduce an analogue of Mal’cev’s quasi-varieties theorem for algebras.
    Download  
     
    Export citation  
     
    Bookmark