Switch to: References

Add citations

You must login to add citations.
  1. Intuitionistic mereology.Paolo Maffezioli & Achille C. Varzi - 2021 - Synthese 198 (Suppl 18):4277-4302.
    Two mereological theories are presented based on a primitive apartness relation along with binary relations of mereological excess and weak excess, respectively. It is shown that both theories are acceptable from the standpoint of constructive reasoning while remaining faithful to the spirit of classical mereology. The two theories are then compared and assessed with regard to their extensional import.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intuitionistic Mereology II: Overlap and Disjointness.Paolo Maffezioli & Achille C. Varzi - 2023 - Journal of Philosophical Logic 52 (4):1197-1233.
    This paper extends the axiomatic treatment of intuitionistic mereology introduced in Maffezioli and Varzi (_Synthese, 198_(S18), 4277–4302 2021 ) by examining the behavior of constructive notions of overlap and disjointness. We consider both (i) various ways of defining such notions in terms of other intuitionistic mereological primitives, and (ii) the possibility of treating them as mereological primitives of their own.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Decidability of Axiomatized Mereotopological Theories.Hsing-Chien Tsai - 2015 - Notre Dame Journal of Formal Logic 56 (2):287-306.
    The signature of the formal language of mereotopology contains two predicates $P$ and $C$, which stand for “being a part of” and “contact,” respectively. This paper will deal with the decidability issue of the mereotopological theories which can be formed by the axioms found in the literature. Three main results to be given are as follows: all axiomatized mereotopological theories are separable; all mereotopological theories up to $\mathbf{ACEMT}$, $\mathbf{SACEMT}$, or $\mathbf{SACEMT}^{\prime}$ are finitely inseparable; all axiomatized mereotopological theories except $\mathbf{SAX}$, $\mathbf{SAX}^{\prime}$, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Intuitionistic Overlap Structures.Francesco Ciraulo - 2013 - Logic and Logical Philosophy 22 (2):201-212.
    We study some connections between two kinds of emph{overlap} relations: that of point-free geometries in the sense of Grzegorczyk, Whitehead and Clarke, and that recently introduced by Sambin within his constructive approach to topology. The main thesis of this paper is that the overlap relation in the latter sense is a necessary tool for a constructive and intuitionistic development of point-free geometry.
    Download  
     
    Export citation  
     
    Bookmark   2 citations