Switch to: References

Add citations

You must login to add citations.
  1. A constructive Galois connection between closure and interior.Francesco Ciraulo & Giovanni Sambin - 2012 - Journal of Symbolic Logic 77 (4):1308-1324.
    We construct a Galois connection between closure and interior operators on a given set. All arguments are intuitionistically valid. Our construction is an intuitionistic version of the classical correspondence between closure and interior operators via complement.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Factorizing the $$\mathbf {Top}$$ Top – $$\mathbf {Loc}$$ Loc adjunction through positive topologies.Francesco Ciraulo, Tatsuji Kawai & Samuele Maschio - 2021 - Archive for Mathematical Logic 60 (7):967-979.
    We characterize the category of Sambin’s positive topologies as the result of the Grothendieck construction applied to a doctrine over the category Loc of locales. We then construct an adjunction between the category of positive topologies and that of topological spaces Top, and show that the well-known adjunction between Top and Loc factors through the constructed adjunction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Embedding locales and formal topologies into positive topologies.Francesco Ciraulo & Giovanni Sambin - 2018 - Archive for Mathematical Logic 57 (7-8):755-768.
    A positive topology is a set equipped with two particular relations between elements and subsets of that set: a convergent cover relation and a positivity relation. A set equipped with a convergent cover relation is a predicative counterpart of a locale, where the given set plays the role of a set of generators, typically a base, and the cover encodes the relations between generators. A positivity relation enriches the structure of a locale; among other things, it is a tool to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Factorizing the Top\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {Top}$$\end{document}–Loc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {Loc}$$\end{document} adjunction through positive topologies. [REVIEW]Francesco Ciraulo, Tatsuji Kawai & Samuele Maschio - 2021 - Archive for Mathematical Logic 60 (7-8):967-979.
    We characterize the category of Sambin’s positive topologies as the result of the Grothendieck construction applied to a doctrine over the category Loc of locales. We then construct an adjunction between the category of positive topologies and that of topological spaces Top, and show that the well-known adjunction between Top and Loc factors through the constructed adjunction.
    Download  
     
    Export citation  
     
    Bookmark