Switch to: References

Add citations

You must login to add citations.
  1. On the Philosophy of Unsupervised Learning.David S. Watson - 2023 - Philosophy and Technology 36 (2):1-26.
    Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Explanatory Depth and Pragmatic Value of Coarse-Grained, Probabilistic, Causal Explanations.David Kinney - 2018 - Philosophy of Science (1):145-167.
    This article considers the popular thesis that a more proportional relationship between a cause and its effect yields a more abstract causal explanation of that effect, which in turn produces a deeper explanation. This thesis is taken to have important implications for choosing the optimal granularity of explanation for a given explanandum. In this article, I argue that this thesis is not generally true of probabilistic causal relationships. In light of this finding, I propose a pragmatic, interest-relative measure of explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Correlation Argument for Reductionism.Christopher Clarke - 2019 - Philosophy of Science 86 (1):76-97.
    Reductionists say things like: all mental properties are physical properties; all normative properties are natural properties. I argue that the only way to resist reductionism is to deny that causation is difference making (thus making the epistemology of causation a mystery) or to deny that properties are individuated by their causal powers (thus making properties a mystery). That is to say, unless one is happy to deny supervenience, or to trivialize the debate over reductionism. To show this, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The problem of granularity for scientific explanation.David Kinney - 2019 - Dissertation, London School of Economics and Political Science (Lse)
    This dissertation aims to determine the optimal level of granularity for the variables used in probabilistic causal models. These causal models are useful for generating explanations in a number of scientific contexts. In Chapter 1, I argue that there is rarely a unique level of granularity at which a given phenomenon can be causally explained, thereby rejecting various causal exclusion arguments. In Chapter 2, I consider several recent proposals for measuring the explanatory power of causal explanations, and show that these (...)
    Download  
     
    Export citation  
     
    Bookmark