Switch to: References

Add citations

You must login to add citations.
  1. On Some Properties of Humanly Known and Humanly Knowable Mathematics.Jason L. Megill, Tim Melvin & Alex Beal - 2014 - Axiomathes 24 (1):81-88.
    We argue that the set of humanly known mathematical truths (at any given moment in human history) is finite and so recursive. But if so, then given various fundamental results in mathematical logic and the theory of computation (such as Craig’s in J Symb Log 18(1): 30–32(1953) theorem), the set of humanly known mathematical truths is axiomatizable. Furthermore, given Godel’s (Monash Math Phys 38: 173–198, 1931) First Incompleteness Theorem, then (at any given moment in human history) humanly known mathematics must (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation