Switch to: References

Add citations

You must login to add citations.
  1. Quantum Theory: a Foundational Approach.Charis Anastopoulos - 2023 - Cambridge: Cambridge University Press.
    This is a textbook on quantum mechanics. It is addressed to graduates and advanced undergraduates. The book presents quantum theory as a logically coherent system, placing stronger emphasis on the theory' s probabilistic structure and on the role of symmetries. It makes students aware of foundational problems from the very beginning, but at the same time, it urges them to adopt a pragmatic attitude towards the quantum formalism. The book consists of five parts. Part I is a review of classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Common Logic of Quantum Universe—Part I: The Case of Non-relativistic Quantum Mechanics.Massimo Tessarotto & Claudio Cremaschini - 2022 - Foundations of Physics 52 (1):1-38.
    One of the most challenging and fascinating issue in mathematical and theoretical physics concerns the possibility of identifying the logic underlying the so-called quantum universe, i.e., Quantum Mechanics and Quantum Gravity. Besides the sheer difficulty of the problem, inherent in the actual formulation of Quantum Mechanics—and especially of Quantum Gravity—to be used for such a task, a crucial aspect lies in the identification of the appropriate axiomatic logical proposition calculus to be associated to such theories. In this paper the issue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information and the complementarity game.K. Svozil - 1997 - World Futures 50 (1):523-532.
    Download  
     
    Export citation  
     
    Bookmark  
  • El enfoque epistemológico de David Hilbert: el a priori del conocimiento y el papel de la lógica en la fundamentación de la ciencia.Rodrigo Lopez-Orellana - 2019 - Principia: An International Journal of Epistemology 23 (2):279-308.
    This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Quantum Decoherence: A Logical Perspective.Sebastian Fortin & Leonardo Vanni - 2014 - Foundations of Physics 44 (12):1258-1268.
    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpretations of Quantum Theory in the Light of Modern Cosmology.Mario Castagnino, Sebastian Fortin, Roberto Laura & Daniel Sudarsky - 2017 - Foundations of Physics 47 (11):1387-1422.
    The difficult issues related to the interpretation of quantum mechanics and, in particular, the “measurement problem” are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott’s problem.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Modal interpretations of quantum mechanics.Michael Dickson - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Language and the Self-Reference Paradox.Julio Michael Stern - 2007 - Cybernetics and Human Knowing 14 (4):71-92.
    Heinz Von Forester characterizes the objects “known” by an autopoietic system as eigen-solutions, that is, as discrete, separable, stable and composable states of the interaction of the system with its environment. Previous articles have presented the FBST, Full Bayesian Significance Test, as a mathematical formalism specifically designed to access the support for sharp statistical hypotheses, and have shown that these hypotheses correspond, from a constructivist perspective, to systemic eigen-solutions in the practice of science. In this article several issues related to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Classical limit and quantum logic.Marcelo Losada, Sebastian Fortin & Federico Holik - 2018 - International Journal of Theoretical Physics 57:465–475.
    The more common scheme to explain the classical limit of quantum mechanics includes decoherence, which removes from the state the interference terms classically inadmissible since embodying non-Booleanity. In this work we consider the classical limit from a logical viewpoint, as a quantum-to-Boolean transition. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-unitary evolution of quantum logics.Sebastian Fortin, Federico Holik & Leonardo Vanni - 2016 - In F. Bagarello, R. Passante & C. Trapani (eds.), Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. pp. 219-234.
    In this work we present a dynamical approach to quantum logics. By changing the standard formalism of quantum mechanics to allow non-Hermitian operators as generators of time evolution, we address the question of how can logics evolve in time. In this way, we describe formally how a non-Boolean algebra may become a Boolean one under certain conditions. We present some simple models which illustrate this transition and develop a new quantum logical formalism based in complex spectral resolutions, a notion that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation