Switch to: References

Add citations

You must login to add citations.
  1. The metaphysics of quantity.Brent Mundy - 1987 - Philosophical Studies 51 (1):29 - 54.
    A formal theory of quantity T Q is presented which is realist, Platonist, and syntactically second-order (while logically elementary), in contrast with the existing formal theories of quantity developed within the theory of measurement, which are empiricist, nominalist, and syntactically first-order (while logically non-elementary). T Q is shown to be formally and empirically adequate as a theory of quantity, and is argued to be scientifically superior to the existing first-order theories of quantity in that it does not depend upon empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Eight journals over eight decades: a computational topic-modeling approach to contemporary philosophy of science.Christophe Malaterre, Francis Lareau, Davide Pulizzotto & Jonathan St-Onge - 2020 - Synthese 199 (1-2):2883-2923.
    As a discipline of its own, the philosophy of science can be traced back to the founding of its academic journals, some of which go back to the first half of the twentieth century. While the discipline has been the object of many historical studies, notably focusing on specific schools or major figures of the field, little work has focused on the journals themselves. Here, we investigate contemporary philosophy of science by means of computational text-mining approaches: we apply topic-modeling algorithms (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Extensive measurement and ratio functions.Brent Mundy - 1988 - Synthese 75 (1):1 - 23.
    Extensive measurement theory is developed in terms of theratio of two elements of an arbitrary (not necessarily Archimedean) extensive structure; thisextensive ratio space is a special case of a more general structure called aratio space. Ratio spaces possess a natural family of numerical scales (r-scales) which are definable in non-representational terms; ther-scales for an extensive ratio space thus constitute a family of numerical scales (extensive r-scales) for extensive structures which are defined in a non-representational manner. This is interpreted as involving (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Faithful representation, physical extensive measurement theory and archimedean axioms.Brent Mundy - 1987 - Synthese 70 (3):373 - 400.
    The formal methods of the representational theory of measurement (RTM) are applied to the extensive scales of physical science, with some modifications of interpretation and of formalism. The interpretative modification is in the direction of theoretical realism rather than the narrow empiricism which is characteristic of RTM. The formal issues concern the formal representational conditions which extensive scales should be assumed to satisfy; I argue in the physical case for conditions related to weak rather than strong extensive measurement, in the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations