Switch to: References

Add citations

You must login to add citations.
  1. Generalized quantifiers.Dag Westerståhl - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Simulation, computation and dynamics in economics.K. Vela Velupillai & Stefano Zambelli - 2015 - Journal of Economic Methodology 22 (1):1-27.
    Computation and Simulation have always played a role in economics – whether it be pure economic theory or any variant of applied, especially policy-oriented, macro- and microeconomics or what has increasingly come to be called empirical or experimental economics. Computations and simulations are also intrinsically dynamic. This triptych – computation, simulation and dynamic – is given natural foundations, mainly as a result of developments in the mathematics underpinnings in the potentials of computing, using digital technology. A running theme in this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tractability and the computational mind.Rineke Verbrugge & Jakub Szymanik - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 339-353.
    We overview logical and computational explanations of the notion of tractability as applied in cognitive science. We start by introducing the basics of mathematical theories of complexity: computability theory, computational complexity theory, and descriptive complexity theory. Computational philosophy of mind often identifies mental algorithms with computable functions. However, with the development of programming practice it has become apparent that for some computable problems finding effective algorithms is hardly possible. Some problems need too much computational resource, e.g., time or memory, to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Strength of the Rainbow Ramsey Theorem.Barbara F. Csima & Joseph R. Mileti - 2009 - Journal of Symbolic Logic 74 (4):1310 - 1324.
    The Rainbow Ramsey Theorem is essentially an "anti-Ramsey" theorem which states that certain types of colorings must be injective on a large subset (rather than constant on a large subset). Surprisingly, this version follows easily from Ramsey's Theorem, even in the weak system RCA₀ of reverse mathematics. We answer the question of the converse implication for pairs, showing that the Rainbow Ramsey Theorem for pairs is in fact strictly weaker than Ramsey's Theorem for pairs over RCA₀. The separation involves techniques (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Choice classes.Ahmet Çevik - 2016 - Mathematical Logic Quarterly 62 (6):563-574.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algorithmic randomness over general spaces.Kenshi Miyabe - 2014 - Mathematical Logic Quarterly 60 (3):184-204.
    The study of Martin‐Löf randomness on a computable metric space with a computable measure has seen much progress recently. In this paper we study Martin‐Löf randomness on a more general space, that is, a computable topological space with a computable measure. On such a space, Martin‐Löf randomness may not be a natural notion because there is no universal test, and Martin‐Löf randomness and complexity randomness (defined in this paper) do not coincide in general. We show that SCT3 is a sufficient (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded low and high sets.Bernard A. Anderson, Barbara F. Csima & Karen M. Lange - 2017 - Archive for Mathematical Logic 56 (5-6):507-521.
    Anderson and Csima :245–264, 2014) defined a jump operator, the bounded jump, with respect to bounded Turing reducibility. They showed that the bounded jump is closely related to the Ershov hierarchy and that it satisfies an analogue of Shoenfield jump inversion. We show that there are high bounded low sets and low bounded high sets. Thus, the information coded in the bounded jump is quite different from that of the standard jump. We also consider whether the analogue of the Jump (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Limits on jump inversion for strong reducibilities.Barbara F. Csima, Rod Downey & Keng Meng Ng - 2011 - Journal of Symbolic Logic 76 (4):1287-1296.
    We show that Sacks' and Shoenfield's analogs of jump inversion fail for both tt- and wtt-reducibilities in a strong way. In particular we show that there is a ${\mathrm{\Delta }}_{2}^{0}$ set B > tt ∅′ such that there is no c.e. set A with A′ ≡ wtt B. We also show that there is a ${\mathrm{\Sigma }}_{2}^{0}$ set C > tt ∅′ such that there is no ${\mathrm{\Delta }}_{2}^{0}$ set D with D′ ≡ wtt C.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Automorphisms of η-like computable linear orderings and Kierstead's conjecture.Charles M. Harris, Kyung Il Lee & S. Barry Cooper - 2016 - Mathematical Logic Quarterly 62 (6):481-506.
    We develop an approach to the longstanding conjecture of Kierstead concerning the character of strongly nontrivial automorphisms of computable linear orderings. Our main result is that for any η-like computable linear ordering, such that has no interval of order type η, and such that the order type of is determined by a -limitwise monotonic maximal block function, there exists computable such that has no nontrivial automorphism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cupping and definability in the local structure of the enumeration degrees.Hristo Ganchev & Mariya I. Soskova - 2012 - Journal of Symbolic Logic 77 (1):133-158.
    We show that every splitting of ${0}_{\mathrm{e}}^{\prime }$ in the local structure of the enumeration degrees, $$\mathcal{G}_{e} , contains at least one low-cuppable member. We apply this new structural property to show that the classes of all $\mathcal{K}$ -pairs in $\mathcal{G}_{e}$ , all downwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees and all upwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees are first order definable in $\mathcal{G}_{e}$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations