Switch to: References

Add citations

You must login to add citations.
  1. Hindman’s theorem for sums along the full binary tree, $$\Sigma ^0_2$$ Σ 2 0 -induction and the Pigeonhole principle for trees. [REVIEW]Lorenzo Carlucci & Daniele Tavernelli - 2022 - Archive for Mathematical Logic 61 (5):827-839.
    We formulate a restriction of Hindman’s Finite Sums Theorem in which monochromaticity is required only for sums corresponding to rooted finite paths in the full binary tree. We show that the resulting principle is equivalent to \-induction over \. The proof uses the equivalence of this Hindman-type theorem with the Pigeonhole Principle for trees \ with an extra condition on the solution tree.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Nonstandard models in recursion theory and reverse mathematics.C. T. Chong, Wei Li & Yue Yang - 2014 - Bulletin of Symbolic Logic 20 (2):170-200.
    We give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The strength of the tree theorem for pairs in reverse mathematics.Ludovic Patey - 2016 - Journal of Symbolic Logic 81 (4):1481-1499.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse Mathematics and Ramsey Properties of Partial Orderings.Jared Corduan & Marcia Groszek - 2016 - Notre Dame Journal of Formal Logic 57 (1):1-25.
    A partial ordering $\mathbb{P}$ is $n$-Ramsey if, for every coloring of $n$-element chains from $\mathbb{P}$ in finitely many colors, $\mathbb{P}$ has a homogeneous subordering isomorphic to $\mathbb{P}$. In their paper on Ramsey properties of the complete binary tree, Chubb, Hirst, and McNicholl ask about Ramsey properties of other partial orderings. They also ask whether there is some Ramsey property for pairs equivalent to $\mathit{ACA}_{0}$ over $\mathit{RCA}_{0}$. A characterization theorem for finite-level partial orderings with Ramsey properties has been proven by the (...)
    Download  
     
    Export citation  
     
    Bookmark