Switch to: References

Add citations

You must login to add citations.
  1. Understanding the infinite II: Coalgebra.David Corfield - 2011 - Studies in History and Philosophy of Science Part A 42 (4):571-579.
    In this paper we give an account of the rise and development of coalgebraic thinking in mathematics and computer science as an illustration of the way mathematical frameworks may be transformed. Originating in a foundational dispute as to the correct way to characterise sets, logicians and computer scientists came to see maximizing and minimizing extremal axiomatisations as a dual pair, each necessary to represent entities of interest. In particular, many important infinitely large entities can be characterised in terms of such (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Robustness, Reliability, and Overdetermination (1981).William C. Wimsatt - 2012 - In Lena Soler (ed.), Characterizing the robustness of science: after the practice turn in philosophy of science. New York: Springer Verlag. pp. 61-78.
    The use of multiple means of determination to “triangulate” on the existence and character of a common phenomenon, object, or result has had a long tradition in science but has seldom been a matter of primary focus. As with many traditions, it is traceable to Aristotle, who valued having multiple explanations of a phenomenon, and it may also be involved in his distinction between special objects of sense and common sensibles. It is implicit though not emphasized in the distinction between (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Practice, Constraint, and Mathematical Concepts.Mark C. R. Smith - 2012 - Philosophia Scientiae 16 (1):15-28.
    Dans cet article je propose d'exprimer et de défendre une conception des pratiques et du domaine de discours mathématiques qui soit sensible, d'une part, au pluralisme des relations entre pratiques inférentielles et intérêts, et d'autre part, à la structure objective et déterminante des concepts mathématiques. J'ébauche tout d'abord une caractérisation générale des pratiques, pour ensuite préciser certains phénomènes propres aux pratiques mathématiques. Suit un recensement des idées qui se dégagent des arguments pluralistes, et de celles qui sont à retenir. Mais (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Volterra Principle Generalized.Tim Räz - 2017 - Philosophy of Science 84 (4):737-760.
    Michael Weisberg and Kenneth Reisman argue that the Volterra Principle can be derived from multiple predator-prey models and that, therefore, the Volterra Principle is a prime example for robustness analysis. In the current article, I give new results regarding the Volterra Principle, extending Weisberg’s and Reisman’s work, and I discuss the consequences of these results for robustness analysis. I argue that we do not end up with multiple, independent models but rather with one general model. I identify the kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations